3 research outputs found

    Measurement of nano molar ammonium with a cyclic olefin copolymer microchip and low-power LED

    No full text
    In oligotrophic regions, ammonium (NH4+) concentrations can be below 50 nM, however, few existing instruments can measure below this level with high confidence. This work, based on the o-pthaldialdehyde (OPA) fluorescence assay, is applied to measure nanomolar NH4+ in a novel optofluidic Cyclic Olefin Copolymer (COC) microchip using a low-power (20 mW) Light Emitting Diode (LED) as the excitation source. The optical arrangement was first modeled using ray tracing software to determine the initial detection volume size. Ammonium standards made with artificial seawater of 5 nM to 1000 nM, were run in triplicates. The limit of detection (LOD) obtained was 1.5 nM (3 x σ of the blank) or a LOD of 15 nM when the y-intercept and the vertical variation of each measured concentration on the calibration curve were taken into consideration (y-intercept +3. S y/x). Precision at 5 nM and 1000 nM was 3.3% and 0.5% respectively. The optofluidic system was also compared to an off-the-shelf fluorometer (Jasco FP2020) and an existing high-resolution shipboard analyser using five different standard concentrations. The LOD and the ammonium concentrations uncertainty for the Jasco FP2020, shipboard analyser, and current microsystem were 217 nM, 39 nM, and 15 nM and ± 232 nM, ± 48 nM, and ± 16 nM respectively. The optical setup was also validated using real samples from the Atlantic. This optical design, without optical fibres, makes the system simple and suitable for use with other fluorescent assays when compact, rugged, low-cost, and low-power consumption instrumentation is required

    A high-resolution analyser for the measurement of ammonium in oligotrophic seawater

    No full text
    In this work, we describe a high-resolution fluorometric shipboard analyser and an improved method to determine NH4+ in oligotrophic seawater. The limit of detection is <5 nM, calculated with 95% confidence level using the weighted regression line applied to the standard addition method using real samples prepared with low nutrient seawater from the Atlantic. The results are summarised and cross-compared with spiked artificial seawater (ASW) and spiked Milli-Q water samples. The analyser has a precision of ±1–4% with a high performance over a wide range from 5 nM to 25 ?M. The methodology of NH4+ analysis is based on the fluorescent product formed between o-pthaldialdehyde and NH4+ in the presence of sulfite. Due to the high resolution of the developed system, we were able to study in depth the sensitivity of the method to salinity, amines, amino acids and potential interferences from particles/algae. The method was found to be sensitive to salinity variations, reducing the signal by up to 85% at 5 nM; this effect decreased at higher concentrations of ammonium. It was noted that the interference from amines at low concentrations was negligible; however, at either high amino acid or high amine concentrations, the signal was depressed. To test for the effect of particles on the system, the system was tested with samples containing phytoplankton (Dunaliella primolecta) cells at different concentrations prepared with ASW to simulate the effect of a phytoplankton bloom. This experiment assessed the potential impact of both particles and other potential fluorescence interferences from cells and/or ammonium leaching from cells. This experiment showed that a phytoplankton bloom could potentially have an impact of up to 12% on the signal of interest. Thus, we propose that this method is suitable for oligotrophic environments rather than coastal and eutrophic environments. The reagent was found to be stable for 17 days and standards of 1 ?M were stable for 6 days under laboratory conditions. The developed analyser was successfully demonstrated in the North Atlantic Ocean, in an area of oligotrophic, low NH4+ oceanic waters

    A high performance microfluidic analyser for phosphate measurements in marine waters using the vanadomolybdate method

    No full text
    We report a high performance autonomous analytical system based on the vanadomolybdate method for the determination of soluble reactive phosphorus in seawater. The system combines a microfluidic chip manufactured from tinted poly (methyl methacrylate) (PMMA), a custom made syringe pump, embedded control electronics and on-board calibration standards. This “lab-on-a-chip” analytical system was successfully deployed and cross-compared with reference analytical methods in coastal (south west England) and open ocean waters (tropical North Atlantic). The results of the miniaturized system compared well with a reference bench-operated phosphate auto-analyser and showed no significant differences in the analytical results (student’s t-test at 95% confidence level). The optical technology used, comprising of tinted PMMA and polished fluidic channels, has allowed an improvement of two orders of magnitude of the limit of detection (52 nM) compared to currently available portable systems based on this method. The system has a wide linear dynamic range 0.1–60 μM, and a good precision (13.6% at 0.4 μM, n=4). The analytical results were corrected for silicate interferences at 0.7 μM, and the measurement frequency was configurable with a sampling throughput of up to 20 samples per hour. This portable micro-analytical system has a low reagent requirement (340 μL per sample) and power consumption (756 J per sample), and has allowed accurate high resolution measurements of soluble reactive phosphorus in seawater
    corecore