3 research outputs found

    Forefinger direction based haptic robot control for physically challenged using MEMS sensor

    Get PDF
    The ability to feel the world through the tools we hold is Haptic Touch. The sensory element that will transform information into experience by remotely interacting with things is challenging. This paper deals with design and implementation of fore finger direction based robot for physically challenged people. The design of the system includes microcontroller, MEMS sensor and RF technology. The robot system receives the command from the MEMS sensor which is placed on the fore finger at the transmitter section. Robot will follow the direction in which we show our Forefinger. The path way of the robot may be either point-to-point or continuous. This sensor can be able to detect the direction of Forefinger and the output is transmitted via RF transmitter. In the receiver section RF receiver which receives corresponding signal will command microcontroller to move robot in that particular direction. Therefore the simple control mechanism of the robot is shown. Experimental results for fore finger based directional robot are enumerated

    Mems sensors controlled haptic forefinger robotic aid

    Get PDF
    The ability to feel the world through the tools we hold is Haptic Touch. The concept of sensory elements transforming information into touch experience by interacting with things remotely is motivating and challenging. This paper deals with the design and implementation of fore finger direction based robot for physically challenged people, which follows the direction of the Forefinger. The path way of the robot may be either point-to-point or continuous. This sensor detects the direction of the forefinger and the output is transmitted via RF transmitter to the receiver unit. In the receiver section RF receiver which receives corresponding signal will command the microcontroller to move the robot in that particular direction. The design of the system includes microcontroller, MEMS sensor and RF technology. The robot system receives the command from the MEMS sensor which is placed on the fore finger at the transmitter section. Therefore the simple control mechanism of the robot is shown. Experimental results for fore finger based directional robot are enumerated

    MEMS SENSORS CONTROLLED HAPTIC FOREFINGER ROBOTIC AID

    No full text
    ABSTRACT The ability to feel the world through the tools we hold is Haptic Touch. The concept of sensory elements transforming information into touch experience by interacting with things remotely is motivating and challenging. This paper deals with the design and implementation of fore finger direction based robot for physically challenged people, which follows the direction of the Forefinger. The path way of the robot may be either point-to-point or continuous. This sensor detects the direction of the forefinger and the output is transmitted via RF transmitter to the receiver unit. In the receiver section RF receiver which receives corresponding signal will command the microcontroller to move the robot in that particular direction. The design of the system includes microcontroller, MEMS sensor and RF technology. The robot system receives the command from the MEMS sensor which is placed on the fore finger at the transmitter section. Therefore the simple control mechanism of the robot is shown. Experimental results for fore finger based directional robot are enumerated
    corecore