10 research outputs found

    Do radiological research articles apply the term "pilot study" correctly? Systematic review

    Get PDF
    AIM: To determine what proportion of radiological studies used the term "pilot" correctly. MATERIAL AND METHODS: Indexed studies describing themselves as a "pilot" in their title were identified from four indexed radiological journals. The aim was to identify 20 consecutive, eligible studies from each journal, as this sample size was deemed sufficient to be representative as to how this methodological description was employed by authors of radiological articles. Data were extracted relating to study design and data presented. The review was reported according to PRISMA guidelines. RESULTS: The search string used identified 658 records across the four targeted journals. Ultimately, 78 reviews describing 5,572 patients were selected for systematic review. Median sample size was just 20 patients. No individual study qualified as a genuine pilot study when assessed against the a priori criteria. In reality, the large majority (66 studies, 84.6%) were framed as studies of diagnostic test accuracy. A significant proportion (21 studies, 26.9%) was retrospective, and the overwhelming majority were conducted in single centres (76 centres, 94.7%). Most (55 studies, 70.5%) stated no rationale for their sample size, and no study presented a formal power calculation. CONCLUSION: Radiological "pilot" studies are mostly underpowered studies of diagnostic test accuracy. In order to have scientific credibility, authors, reviewers, and editors of radiological journals are encouraged to familiarise themselves with different methodological study designs and their precise implications

    How to avoid describing your radiological research study incorrectly

    Get PDF
    This review identifies and examines terms used to describe a radiological research “study” or “trial”. A taxonomy of clinical research descriptions is explained with reference to medical imaging examples. Because many descriptive terms have precise methodological implications, it is important that these terms are understood by readers and used correctly by researchers, so that the reader is not misled

    Oxygen Enhanced Optoacoustic Tomography (OE-OT) Reveals Vascular Dynamics in Murine Models of Prostate Cancer

    Get PDF
    Poor oxygenation of solid tumours has been linked with resistance to chemo- and radio-therapy and poor patient outcomes, hence non-invasive imaging of oxygen supply and demand in tumours could improve disease staging and therapeutic monitoring. Optoacoustic tomography (OT) is an emerging clinical imaging modality that provides static images of endogenous haemoglobin concentration and oxygenation. Here, we demonstrate oxygen enhanced (OE)-OT, exploiting an oxygen gas challenge to visualise the spatiotemporal heterogeneity of tumour vascular function. We show that tracking oxygenation dynamics using OE-OT reveals significant differences between two prostate cancer models in nude mice with markedly different vascular function (PC3 & LNCaP), which appear identical in static OT. LNCaP tumours showed a spatially heterogeneous response within and between tumours, with a substantial but slow response to the gas challenge, aligned with ex vivo analysis, which revealed a generally perfused and viable tumour with marked areas of haemorrhage. PC3 tumours had a lower fraction of responding pixels compared to LNCaP with a high disparity between rim and core response. While the PC3 core showed little or no dynamic response, the rim showed a rapid change, consistent with our ex vivo findings of hypoxic and necrotic core tissue surrounded by a rim of mature and perfused vasculature. OE-OT metrics are shown to be highly repeatable and correlate directly on a per-tumour basis to tumour vessel function assessed ex vivo. OE-OT provides a non-invasive approach to reveal the complex dynamics of tumour vessel perfusion, permeability and vasoactivity in real time. Our findings indicate that OE-OT holds potential for application in prostate cancer patients, to improve delineation of aggressive and indolent disease as well as in patient stratification for chemo- and radio-therapy.We would also like to thank the CRUK Cambridge Institute Core Facilities for their support, including the BRU, Histopathology, Light Microscopy, Biorepository, and Preclinical Imaging. We are grateful for advice from Dr Simon Richardson (Institute of Cancer Research, Sutton, UK) on optimal use of the Oxylite pO2 probe. This work was supported by the EPSRC-CRUK Cancer Imaging Centre in Cambridge and Manchester (C197/A16465), Cancer Research UK (C14303/A17197, C47594/A16267) and the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° FP7-PEOPLE-2013-CIG-630729

    Hyperpolarised 13C MRI: a new horizon for non-invasive diagnosis of aggressive breast cancer

    Get PDF
    Hyperpolarised 13C MRI (HP-MRI) is a novel imaging technique that allows real-time analysis of metabolic pathways in vivo. 1 The technology to conduct HP-MRI in humans has recently become available and is starting to be clinically applied. As knowledge of molecular biology advances, it is increasingly apparent that cancer cell metabolism is related to disease outcomes, with lactate attracting specific attention. 2 Recent reviews of breast cancer screening programs have raised concerns and increased public awareness of over treatment. The scientific community needs to shift focus from improving cancer detection alone to pursuing novel methods of distinguishing aggressive breast cancers from those which will remain indolent. HP-MRI offers the opportunity to identify aggressive tumour phenotypes and help monitor/predict therapeutic response. Here we report one of the first cases of breast cancer imaged using HP-MRI alongside correlative conventional imaging, including breast MRI

    Detecting gas-induced vasomotor changes via blood oxygenation level-dependent contrast in healthy breast parenchyma and breast carcinoma.

    No full text
    Purpose To evaluate blood oxygenation level-dependent (BOLD) contrast changes in healthy breast parenchyma and breast carcinoma during administration of vasoactive gas stimuli.Materials and methods Magnetic resonance imaging (MRI) was performed at 3T in 19 healthy premenopausal female volunteers using a single-shot fast spin echo sequence to acquire dynamic T2 -weighted images. 2% (n = 9) and 5% (n = 10) carbogen gas mixtures were interleaved with either medical air or oxygen in 2-minute blocks, for four complete cycles. A 12-minute medical air breathing period was used to determine background physiological modulation. Pixel-wise correlation analysis was applied to evaluate response to the stimuli in breast parenchyma and these results were compared to the all-air control. The relative BOLD effect size was compared between two groups of volunteers scanned in different phases of the menstrual cycle. The optimal stimulus design was evaluated in five breast cancer patients.Results Of the four stimulus combinations tested, oxygen vs. 5% carbogen produced a response that was significantly stronger (P < 0.05) than air-only breathing in volunteers. Subjects imaged during the follicular phase of their cycle when estrogen levels typically peak exhibited a significantly smaller BOLD response (P = 0.01). Results in malignant tissue were variable, with three out of five lesions exhibiting a diminished response to the gas stimulus.Conclusion Oxygen vs. 5% carbogen is the most robust stimulus for inducing BOLD contrast, consistent with the opposing vasomotor effects of these two gases. Measurements may be confounded by background physiological fluctuations and menstrual cycle changes. J. Magn. Reson. Imaging 2016;44:335-345

    An optoacoustic imaging feature set to characterise blood vessels surrounding benign and malignant breast lesions.

    No full text
    Combining optoacoustic (OA) imaging with ultrasound (US) enables visualisation of functional blood vasculature in breast lesions by OA to be overlaid with the morphological information of US. Here, we develop a simple OA feature set to differentiate benign and malignant breast lesions. 94 female patients with benign, indeterminate or suspicious lesions were recruited and underwent OA-US. An OA-US imaging feature set was developed using images from the first 38 patients, which contained 14 malignant and 8 benign solid lesions. Two independent radiologists blindly scored the OA-US images of a further 56 patients, which included 31 malignant and 13 benign solid lesions, with a sensitivity of 96.8% and specificity of 84.6%. Our findings indicate that OA-US can reveal vascular patterns of breast lesions that indicate malignancy using a simple feature set based on single wavelength OA data, which is therefore amenable to application in low resource settings for breast cancer management
    corecore