21 research outputs found

    Efficient Physical Embedding of Topologically Complex Information Processing Networks in Brains and Computer Circuits

    Get PDF
    Nervous systems are information processing networks that evolved by natural selection, whereas very large scale integrated (VLSI) computer circuits have evolved by commercially driven technology development. Here we follow historic intuition that all physical information processing systems will share key organizational properties, such as modularity, that generally confer adaptivity of function. It has long been observed that modular VLSI circuits demonstrate an isometric scaling relationship between the number of processing elements and the number of connections, known as Rent's rule, which is related to the dimensionality of the circuit's interconnect topology and its logical capacity. We show that human brain structural networks, and the nervous system of the nematode C. elegans, also obey Rent's rule, and exhibit some degree of hierarchical modularity. We further show that the estimated Rent exponent of human brain networks, derived from MRI data, can explain the allometric scaling relations between gray and white matter volumes across a wide range of mammalian species, again suggesting that these principles of nervous system design are highly conserved. For each of these fractal modular networks, the dimensionality of the interconnect topology was greater than the 2 or 3 Euclidean dimensions of the space in which it was embedded. This relatively high complexity entailed extra cost in physical wiring: although all networks were economically or cost-efficiently wired they did not strictly minimize wiring costs. Artificial and biological information processing systems both may evolve to optimize a trade-off between physical cost and topological complexity, resulting in the emergence of homologous principles of economical, fractal and modular design across many different kinds of nervous and computational networks

    Persistent Neutrophilic Meningitis in an Immunocompetent Patient after Basilar Skull Fracture: Case report.

    Get PDF
    Abstract Background Persistent neutrophilic meningitis is an unusual form of chronic meningitis that is defined as clinical meningitis with a neutrophilic pleocytosis that persists for greater than 7 days despite empiric antimicrobial therapy. Although numerous disease processes can cause this syndrome, the majority of cases are due to opportunistic pathogens infecting immunocompromised hosts. Case Presentation A 47 year-old female presented after basilar skull fracture with persistent neutrophilic meningitis unresponsive to empiric broad-spectrum antibiotics. After more than weeks of intensive therapy, 4 hospitalizations and 3 relapses, Nocardia cyriacigeorgica was identified from cerebral spinal fluid. Induction therapy was begun with Ceftriaxone and trimethoprim-sulfamethoxazole (TMP-SMX) for 6 weeks followed by therapy with TMP-SMX and doxycycline for one year. The patient made a complete recovery without sequelae. Conclusions Due to the difficulty in obtaining a microbiologic diagnosis, appropriate treatment in cases of persistent neutrophilic meningitis is often delayed leading to morbidity, This case highlights a number of the unique features of Nocardia meningitis and the importance of considering Nocardia infection as a cause of persistent neutrophilic meningitis even in immunocompetent patients

    Multivariate metabotyping of plasma accurately predicts survival in patients with decompensated cirrhosis.

    Get PDF
    Background & AimsPredicting survival in decompensated cirrhosis (DC) is important in decision making for liver transplantation and resource allocation. We investigated whether high-resolution metabolic profiling can determine a metabolic phenotype associated with 90-day survival.MethodsTwo hundred and forty-eight subjects underwent plasma metabotyping by 1H nuclear magnetic resonance (NMR) spectroscopy and reversed-phase ultra-performance liquid chromatography coupled to time-of-flight mass spectrometry (UPLC-TOF-MS; DC: 80-derivation set, 101-validation; stable cirrhosis (CLD) 20 and 47 healthy controls (HC)).Results1H NMR metabotyping accurately discriminated between surviving and non-surviving patients with DC. The NMR plasma profiles of non-survivors were attributed to reduced phosphatidylcholines and lipid resonances, with increased lactate, tyrosine, methionine and phenylalanine signal intensities. This was confirmed on external validation (area under the receiver operating curve [AUROC]=0.96 (95% CI 0.90–1.00, sensitivity 98%, specificity 89%). UPLC-TOF-MS confirmed that lysophosphatidylcholines and phosphatidylcholines [LPC/PC] were downregulated in non-survivors (UPLC-TOF-MS profiles AUROC of 0.94 (95% CI 0.89–0.98, sensitivity 100%, specificity 85% [positive ion detection])). LPC concentrations negatively correlated with circulating markers of cell death (M30 and M65) levels in DC. Histological examination of liver tissue from DC patients confirmed increased hepatocyte cell death compared to controls. Cross liver sampling at time of liver transplantation demonstrated that hepatic endothelial beds are a source of increased circulating total cytokeratin-18 in DC.ConclusionPlasma metabotyping accurately predicts mortality in DC. LPC and amino acid dysregulation is associated with increased mortality and severity of disease reflecting hepatocyte cell death

    Character and temporal evolution of apoptosis in acetaminophen-induced acute liver failure

    No full text
    OBJECTIVE: To evaluate the role of hepatocellular and extrahepatic apoptosis during the evolution of Acetaminophen-induced acute liver failure (AALF). DESIGN & SETTING: A prospective observational study in two tertiary liver transplant units. PATIENTS: 88 patients with AALF were recruited. Control groups included patients with non-AALF (n=13), non-hepatic multi-organ failure (MOF, n=28), chronic liver disease (CLD, n=19) and healthy controls (HC, n=11). MEASUREMENTS: Total and caspase-cleaved cytokeratin 18 (M65 and M30 measured on admission and sequentially on day 3, 7 and 10 following admission. Levels were also determined from hepatic, portal vein and systemic arterial blood in seven patients undergoing transplantation. Protein arrays of liver homogenates from AALF patients were assessed for apoptosis-associated proteins and histological assessment of liver tissue was performed. MAIN RESULTS: Admission M30 levels were significantly elevated in AALF and NALF patients compared to MOF, CLD and healthy controls. Admission M30 levels correlated with outcome with AUROC of 0.755 (0.639-0.885, p<0.001). Peak levels in ALF patients were seen on admission then fell significantly but did not normalize over ten days. A negative gradient of M30 from the portal to hepatic vein was demonstrated in AALF patients (p=0.042) at the time of liver transplant. Analysis of protein array data demonstrated lower apoptosis-associated protein and higher catalase concentrations in AALF liver compared to controls (p<0.05). Explant histological analysis revealed evidence of cellular proliferation with an absence of histological evidence of apoptosis. CONCLUSIONS: Hepatocellular apoptosis occurs in the early phases of human AALF, peaking on day 1 of hospital admission and correlates strongly with poor outcome. Hepatic regenerative/tissue repair responses prevail during the later stages of ALF where elevated levels of M30 are likely to reflect epithelial cell death in extra-hepatic organs
    corecore