4 research outputs found

    Induction of a proinflammatory response in cortical astrocytes by the major metabolites accumulating in HMG-CoA lyase deficiency : the role of ERK signaling pathway in cytokine release

    No full text
    3-Hydroxy-3-methylglutaric aciduria (HMGA) is an inherited metabolic disorder caused by 3-hydroxy-3-methylglutaryl-CoA lyase deficiency. It is biochemically characterized by predominant tissue accumulation and high urinary excretion of 3-hydroxy-3-methylglutarate (HMG) and 3-methylglutarate (MGA). Affected patients commonly present acute symptoms during metabolic decompensation, including vomiting, seizures, and lethargy/coma accompanied by metabolic acidosis and hypoketotic hypoglycemia. Although neurological manifestations are common, the pathogenesis of brain injury in this disease is poorly known. Astrocytes are important for neuronal protection and are susceptible to damage by neurotoxins. In the present study, we investigated the effects of HMG and MGA on important parameters of redox homeostasis and cytokine production in cortical cultured astrocytes. The role of the metabolites on astrocyte mitochondrial function (thiazolyl blue tetrazolium bromide (MTT) reduction) and viability (propidium iodide incorporation) was also studied. Both organic acids decreased astrocytic mitochondrial function and the concentrations of reduced glutathione without altering cell viability. In contrast, they increased reactive species formation (2′-7′-dichlorofluorescein diacetate (DCFHDA) oxidation), as well as IL-1β, IL-6, and TNF α release through the ERK signaling pathway. Taken together, the data indicate that the principal compounds accumulating in HMGA induce a proinflammatory response in cultured astrocytes that may possibly be involved in the neuropathology of this disease

    Application of Nanoparticles on Diagnosis and Therapy in Gliomas

    Get PDF
    Glioblastoma multiforme (GBM) is one of the most deadly diseases that affect humans, and it is characterized by high resistance to chemotherapy and radiotherapy. Its median survival is only fourteen months, and this dramatic prognosis has stilled without changes during the last two decades; consequently GBM remains as an unsolved clinical problem. Therefore, alternative diagnostic and therapeutic approaches are needed for gliomas. Nanoparticles represent an innovative tool in research and therapies in GBM due to their capacity of self-assembly, small size, increased stability, biocompatibility, tumor-specific targeting using antibodies or ligands, encapsulation and delivery of antineoplastic drugs, and increasing the contact surface between cells and nanomaterials. The active targeting of nanoparticles through conjugation with cell surface markers could enhance the efficacy of nanoparticles for delivering several agents into the tumoral area while significantly reducing toxicity in living systems. Nanoparticles can exploit some biological pathways to achieve specific delivery to cellular and intracellular targets, including transport across the blood-brain barrier, which many anticancer drugs cannot bypass. This review addresses the advancements of nanoparticles in drug delivery, imaging, diagnosis, and therapy in gliomas. The mechanisms of action, potential effects, and therapeutic results of these systems and their future applications in GBM are discussed

    Oxidative stress, disrupted energy metabolism, and altered signaling pathways in glutaryl-coa dehydrogenase knockout mice : potential implications of quinolinic acid toxicity in the neuropathology of glutaric acidemia type I

    No full text
    We investigated the effects of an acute intrastriatal QUIN administration on cellular redox and bioenergetics homeostasis, as well as on important signaling pathways in the striatum of wild-type (Gcdh +/+, WT) and knockout mice for glutaryl-CoA dehydrogenase (Gcdh −/−) fed a high lysine (Lys, 4.7 %) chow. QUIN increased lactate release in both Gcdh +/+ and Gcdh −/− mice and reduced the activities of complex IV and creatine kinase only in the striatum of Gcdh −/− mice. QUIN also induced lipid and protein oxidative damage and increased the generation of reactive nitrogen species, as well as the activities of the antioxidant enzymes glutathione peroxidase, superoxide dismutase 2, and glutathione-S-transferase in WT and Gcdh −/− animals. Furthermore, QUIN induced DCFH oxidation (reactive oxygen species production) and reduced GSH concentrations (antioxidant defenses) in Gcdh −/−. An early increase of Akt and phospho-Erk 1/2 in the cytosol and Nrf2 in the nucleus was also observed, as well as a decrease of cytosolic Keap1caused by QUIN, indicating activation of the Nrf2 pathway mediated by Akt and phospho-Erk 1/2, possibly as a compensatory protective mechanism against the ongoing QUIN-induced toxicity. Finally, QUIN increased NF-κB and diminished IκBα expression, evidencing a pro-inflammatory response. Our data show a disruption of energy and redox homeostasis associated to inflammation induced by QUIN in the striatum of Gcdh −/− mice submitted to a high Lys diet. Therefore, it is presumed that QUIN may possibly contribute to the pathophysiology of striatal degeneration in children with glutaric aciduria type I during inflammatory processes triggered by infections or vaccinations

    Toxic synergism between quinolinic acid and glutaric acid in neuronal cells is mediated by oxidative stress : insights to a new toxic model

    No full text
    It has been shown that synergistic toxic effects of quinolinic acid (QUIN) and glutaric acid (GA), both in isolated nerve endings and in vivo conditions, suggest the contribution of these metabolites to neurodegeneration. However, this synergism still requires a detailed characterization of the mechanisms involved in cell damage during its occurrence. In this study, the effects of subtoxic concentrations of QUIN and/or GA were tested in neuronal cultures, co-cultures (neuronal cells + astrocytes), and mixed cultures (neuronal cells + astrocytes + microglia) from rat cortex and striatum. The exposure of different cortical and striatal cell cultures to QUIN + GA resulted in cell death and stimulated different markers of oxidative stress, including reactive oxygen species (ROS) formation; changes in the activity of antioxidant enzymes such as superoxide dismutase, catalase, and glutathione peroxidase; and depletion of endogenous antioxidants such as -SH groups and glutathione. The co-incubation of neuronal cultures with QUIN + GA plus the N-methyl-D-aspartate antagonist MK-801 prevented cell death but not ROS formation, whereas the antioxidant melatonin reduced both parameters. Our results demonstrated that QUIN and GA can create synergistic scenarios, inducing toxic effects on some parameters of cell viability via the stimulation of oxidative damage. Therefore, it is likely that oxidative stress may play a major causative role in the synergistic actions exerted by QUIN + GA in a variety of cell culture conditions involving the interaction of different neural types
    corecore