17 research outputs found

    0-level Vacuum Packaging RT Process for MEMS Resonators

    Get PDF
    A new Room Temperature (RT) 0-level vacuum package is demonstrated in this work, using amorphous silicon (aSi) as sacrificial layer and SiO2 as structural layer. The process is compatible with most of MEMS resonators and Resonant Suspended-Gate MOSFET [1] fabrication processes. This paper presents a study on the influence of releasing hole dimensions on the releasing time and hole clogging. It discusses mass production compatibility in terms of packaging stress during back-end plastic injection process. The packaging is done at room temperature making it fully compatible with IC-processed wafers and avoiding any subsequent degradation of the active devices.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/EDA-Publishing

    Silicon on Nothing Mems Electromechanical Resonator

    Get PDF
    The very significant growth of the wireless communication industry has spawned tremendous interest in the development of high performances radio frequencies (RF) components. Micro Electro Mechanical Systems (MEMS) are good candidates to allow reconfigurable RF functions such as filters, oscillators or antennas. This paper will focus on the MEMS electromechanical resonators which show interesting performances to replace SAW filters or quartz reference oscillators, allowing smaller integrated functions with lower power consumption. The resonant frequency depends on the material properties, such as Young's modulus and density, and on the movable mechanical structure dimensions (beam length defined by photolithography). Thus, it is possible to obtain multi frequencies resonators on a wafer. The resonator performance (frequency, quality factor) strongly depends on the environment, like moisture or pressure, which imply the need for a vacuum package. This paper will present first resonator mechanisms and mechanical behaviors followed by state of the art descriptions with applications and specifications overview. Then MEMS resonator developments at STMicroelectronics including FEM analysis, technological developments and characterization are detailed.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/EDA-Publishing

    6. MEMS based color-VGA micro-projector system

    Get PDF
    This paper presents a complete portable laser-based projection system using twofold of one dimensional magnetic actuated MEMS linear scanning micro-mirrors. Dedicated high speed electronics was developed to drive the MEMS, detect the mirror scanning position at any time and synchronize the two mirrors and the laser pulsation. The achieved projection system head is 4.5 cm3 and is able to project colorful static images and videos (50 fps) with projection size of 50 cm diagonal at 50 cm distance with VGA (640Ă—480 px) resolution

    0-level Vacuum Packaging RT Process for MEMS Resonators

    No full text
    A new Room Temperature (RT) 0-level vacuum package is demonstrated in this work, using amorphous silicon (aSi) as sacrificial layer and SiO2 as structural layer. The process is compatible with most of MEMS resonators and Resonant Suspended-Gate MOSFET [1] fabrication processes. This paper presents a study on the influence of releasing hole dimensions on the releasing time and hole clogging. It discusses mass production compatibility in terms of packaging stress during back-end plastic injection process. The packaging is done at room temperature making it fully compatible with IC-processed wafers and avoiding any subsequent degradation of the active devices

    Micro-beamer based on MEMS micro-mirrors and laser light source

    Get PDF
    This paper presents a complete portable laser-based projection system using two one-dimensional magnetic actuated MEMS linear scanning micro-mirrors. Dedicated high speed electronics was developed to drive the MEMS, detect the mirror scanning position at any time and synchronize the two mirrors and the laser pulsation. The achieved projection system head is 3 cm3 and is able to project static images and videos with projection size of 50 cm diagonal at 50 cm distance with 32x32 px resolution, the resolution is only limited by current optical setup. The circuit building blocks itself can project image with resolution up to QVGA (320x240 px), suitable for information display applications. © 2009
    corecore