8,259 research outputs found

    Ultrasound-guided trans-rectal high-intensity focused ultrasound (HIFU) for advanced cervical cancer ablation is feasible: a case report.

    Get PDF
    High-intensity focused ultrasound (HIFU) is an ablative treatment undergoing assessment for the treatment of benign and malignant disease. We describe the first reported intracavitary HIFU ablation for recurrent, unresectable and symptomatic cervical cancer.A 38 year old woman receiving palliative chemotherapy for metastatic cervical adenocarcinoma was offered ablative treatment from an intracavitary trans-rectal HIFU device (Sonablate® 500). Pre-treatment symptoms included vaginal bleeding and discharge that were sufficient to impede her quality of life. No peri-procedural adverse events occurred. Symptoms resolved completely immediately post-procedure, reappeared at 7 days, increasing to pre-procedural levels by day 30.This first time experience of intracavitary cervical HIFU suggests that it is feasible for palliation of advanced cervical cancer, with no early evidence of unexpected toxicity. Ethical approval had also been granted for the use of per-vaginal access if appropriate. This route, alone or in combination with the rectal route, may provide increased accessibility in future patients with a redesigned device more suited to trans-vaginal ablations.Intracavitary HIFU is a potentially safe procedure for the treatment of cervical cancer and able to provide symptomatic improvement in the palliative setting

    Transonic flutter study of a 50.5 deg cropped-delta wing with two rearward-mounted nacelles

    Get PDF
    Transonic flutter characteristics of three geometrically similar delta-wing models were experimentally determined in the Langley transonic dynamics tunnel at Mach numbers from about 0.6 to 1.2. The models were designed to be simplified versions of an early supersonic transport wing design. The model was an aspect-ratio-1.28 cropped-delta wing with a leadingedge sweep of 50.5 deg. The flutter characteristics obtained for this wing configuration indicated a minimum flutter-speed index near a Mach number of 0.92 and a transonic compressibility dip amounting to about a 27-percent decrease in the flutter-speed index relative to the value at a Mach number of 0.6. Analytical studies were performed for one wing model at Mach numbers of 0.6, 0.7, 0.8, and 0.9 by using both doublet-lattice and lifting-surface (kernel-function) unsteady aerodynamic theory. A comparison of the analytical and experimental flutter results showed good agreement at all Mach numbers investigated

    Development and demonstration of a flutter-suppression system using active controls

    Get PDF
    The application of active control technology to suppress flutter was demonstrated successfully in the transonic dynamics tunnel with a delta-wing model. The model was a simplified version of a proposed supersonic transport wing design. An active flutter suppression method based on an aerodynamic energy criterion was verified by using three different control laws. The first two control laws utilized both leading-edge and trailing-edge active control surfaces, whereas the third control law required only a single trailing-edge active control surface. At a Mach number of 0.9 the experimental results demonstrated increases in the flutter dynamic pressure from 12.5 percent to 30 percent with active controls. Analytical methods were developed to predict both open-loop and closed-loop stability, and the results agreed reasonably well with the experimental results

    Photon Conserving Radiative Transfer around Point Sources in multi-dimensional Numerical Cosmology

    Get PDF
    Many questions in physical cosmology regarding the thermal and ionization history of the intergalactic medium are now successfully studied with the help of cosmological hydrodynamical simulations. Here we present a numerical method that solves the radiative transfer around point sources within a three dimensional cartesian grid. The method is energy conserving independently of resolution: this ensures the correct propagation speeds of ionization fronts. We describe the details of the algorithm, and compute as first numerical application the ionized region surrounding a mini-quasar in a cosmological density field at z=7.Comment: 5 pages, 4 figures, submitted to ApJ

    Pattern Dynamics of Vortex Ripples in Sand: Nonlinear Modeling and Experimental Validation

    Get PDF
    Vortex ripples in sand are studied experimentally in a one-dimensional setup with periodic boundary conditions. The nonlinear evolution, far from the onset of instability, is analyzed in the framework of a simple model developed for homogeneous patterns. The interaction function describing the mass transport between neighboring ripples is extracted from experimental runs using a recently proposed method for data analysis, and the predictions of the model are compared to the experiment. An analytic explanation of the wavelength selection mechanism in the model is provided, and the width of the stable band of ripples is measured.Comment: 4 page

    The scalar sector in the Myers-Pospelov model

    Full text link
    We construct a perturbative expansion of the scalar sector in the Myers-Pospelov model, up to second order in the Lorentz violating parameter and taking into account its higher-order time derivative character. This expansion allows us to construct an hermitian positive-definite Hamiltonian which provides a correct basis for quantization. Demanding that the modified normal frequencies remain real requires the introduction of an upper bound in the magnitude |k| of the momentum, which is a manifestation of the effective character of the model. The free scalar propagator, including the corresponding modified dispersion relations, is also calculated to the given order, thus providing the starting point to consider radiative corrections when interactions are introduced.Comment: Published in AIP Conf.Proc.977:214-223,200

    Fermion Masses and Mixing in Four and More Dimensions

    Full text link
    We give an overview of recent progress in the study of fermion mass and flavor mixing phenomena. Mass matrix ansatze are considered within the SM and SUSY GUTs where some predictive frameworks based on SU(5) and SO(10) are reviewed. We describe a variety of schemes to construct quark mass matrices in extra dimensions focusing on four major classes: models with the SM residing on 3-brane, models with universal extra dimensions, models with split fermions and models with warped extra dimensions. We outline how realistic patterns of quark mass matrices could be derived from orbifold models in heterotic superstring theory. Finally, we address the fermion mass problem in intersecting D-branes scenarios, and present models with D6-branes able to give a good quantitatively description of quark masses and mixing. The role of flavor/CP violation problem as a probe of new physics is emphasized.Comment: a review based on seminars presented by S.K. in different places, 34 pages, late

    Numerical Simulations of High Redshift Star Formation in Dwarf Galaxies

    Get PDF
    We present first results from three-dimensional hydrodynamic simulations of the high redshift formation of dwarf galaxies. The simulations use an Eulerian adaptive mesh refinement technique to follow the non-equilibrium chemistry of hydrogen and helium with cosmological initial conditions drawn from a popular Lambda-dominated CDM model. We include the effects of reionization using a uniform radiation field, a phenomenological description of the effect of star formation and, in a separate simulation, the effects of stellar feedback. The results highlight the effects of stellar feedback and photoionization on the baryon content and star formation of galaxies with virial temperatures of approximately 10^4K. Dwarf sized dark matter halos that assemble prior to reionization are able to form stars. Most halos of similar mass that assemble after reionization do not form stars by redshift of three. Dwarf galaxies that form stars show large variations in their gas content because of stellar feedback and photoionization effects. Baryon-to-dark matter mass ratios are found to lie below the cosmic mean as a result of stellar feedback. The supposed substructure problem of CDM is critically assessed on the basis of these results. The star formation histories modulated by radiative and stellar feedbacks are discussed. In addition, metallicities of individual objects are shown to be naturally correlated with their mass-to-light ratios as is also evident in the properties of local dwarf galaxies.Comment: 27 pages, 8 figures, accepted for publication in Ap

    CP Violation beyond the Standard Model

    Get PDF
    In this talk a number of broad issues are raised about the origins of CP violation and how to test the ideas.Comment: 17 pages, LaTeX, 6 postscript figures. Uses iopart10.clo, iopart12.clo and iopart.cls. Plenary talk given at the BSM Phenomenology Workshop, Durham, UK, 6-11 May 2001. To appear in the proceeding
    corecore