5 research outputs found

    A Review on Cadmium and Lead Contamination: Sources, Fate, Mechanism, Health Effects and Remediation Methods

    Get PDF
    Cadmium and lead soil contamination is a widespread environmental problem that requires profound and sustainable solutions. These toxic elements can be naturally occurring on the Earth’s crust or from man-made origins. Cadmium and lead could accumulate and translocate in soil over the long term. Thus, their risk of entering the food chain is extremely elevated and their effects on the living organisms in the food web are of great concern. The main purpose of this review study is to emphasize the risk to human health of cadmium and lead as an environmental contaminant in soil and plants. Human exposure to cadmium and lead can cause severe illness; for instance, long-term exposure to cadmium can alter kidney health and cause dysfunction. Additionally, lead threatens the nervous system and causes countless diseases. Hence, the remediation of cadmium and lead from soil before they enter the food chain remains essential, and regular monitoring of their principal sources is crucially needed for a sustainable soil ecosystem

    Review on Recent Developments in Bioinspired-Materials for Sustainable Energy and Environmental Applications

    No full text
    Nature has always inspired innovative minds for development of new designs. Animals and plants provide various structures with lower density, more strength and high energy sorption abilities that can incite the development of new designs with significant properties. By observing the important functions of biological structures found in nature, scientists have fabricated structures by bio-inspiration that have been proved to exhibit a significant improvement over traditional structures for their applications in the environmental and energy sector. Bio-fabricated materials have shown many advantages due to their easy synthesis, flexible nature, high performance and multiple functions as these can be used in light harvesting systems, batteries, biofuels, catalysis, purification of water, air and environmental monitoring. However, there is an urgent need for sensitive fabrication instruments that can synthesize bio-inspired structures and convert laboratory scale synthesis into large scale production. The present review highlights recent advances in synthesis of bio-inspired materials and use of hierarchical nanomaterials generated through biomolecular self-assembly for their use in removal of environmental contaminants and sustainable development

    A Review of Pyrene Bioremediation Using <i>Mycobacterium</i> Strains in a Different Matrix

    No full text
    Polycyclic aromatic hydrocarbons are compounds with 2 or more benzene rings, and 16 of them have been classified as priority pollutants. Among them, pyrene has been found in higher concentrations than recommended, posing a threat to the ecosystem. Many bacterial strains have been identified as pyrene degraders. Most of them belong to Gram-positive strains such as Mycobacterium sp. and Rhodococcus sp. These strains were enriched and isolated from several sites contaminated with petroleum products, such as fuel stations. The bioremediation of pyrene via Mycobacterium strains is the main objective of this review. The scattered data on the degradation efficiency, formation of pyrene metabolites, bio-toxicity of pyrene and its metabolites, and proposed degradation pathways were collected in this work. The study revealed that most of the Mycobacterium strains were capable of degrading pyrene efficiently. The main metabolites of pyrene were 4,5-dihydroxy pyrene, phenanthrene-4,5-dicarboxylate, phthalic acid, and pyrene-4,5-dihydrodiol. Some metabolites showed positive results for the Ames mutagenicity prediction test, such as 1,2-phenanthrenedicarboxylic acid, 1-hydroxypyrene, 4,5-dihydropyrene, 4-phenanthrene-carboxylic acid, 3,4-dihydroxyphenanthrene, monohydroxy pyrene, and 9,10-phenanthrenequinone. However, 4-phenanthrol showed positive results for experimental and prediction tests. This study may contribute to enhancing the bioremediation of pyrene in a different matrix

    Insights into Solar Disinfection Enhancements for Drinking Water Treatment Applications

    No full text
    Poor access to drinking water, sanitation, and hygiene has always been a major concern and a main challenge facing humanity even in the current century. A third of the global population lacks access to microbiologically safe drinking water, especially in rural and poor areas that lack proper treatment facilities. Solar water disinfection (SODIS) is widely proven by the World Health Organization as an accepted method for inactivating waterborne pathogens. A significant number of studies have recently been conducted regarding its effectiveness and how to overcome its limitations, by using water pretreatment steps either by physical, chemical, and biological factors or the integration of photocatalysis in SODIS processes. This review covers the role of solar disinfection in water treatment applications, going through different water treatment approaches including physical, chemical, and biological, and discusses the inactivation mechanisms of water pathogens including bacteria, viruses, and even protozoa and fungi. The review also addresses the latest advances in different pre-treatment modifications to enhance the treatment performance of the SODIS process in addition to the main limitations and challenges
    corecore