33 research outputs found
Expansion and Activation Kinetics of Immune Cells during Early Phase of GVHD in Mouse Model Based on Chemotherapy Conditioning
In the present paper, we have investigated early pathophysiological events in graft-versus-host disease (GVHD), a major complication to hematopoietic stem cell transplantation (HSCT). BLLB/c female mice conditioned with busulfan/cyclophosphamide (Bu-Cy) were transplanted with allogeneic male C57BL/6. Control group consisted of syngeneic transplanted Balb/c mice. In allogeneic settings, significant expansion and maturation of donor dendritic cells (DCs) were observed at day +3, while donor T-cells CD8+ were increased at day +5 (230%) compared to syngeneic HSCT. Highest levels of inflammatory cytokines IL-2, IFN-gamma, and TNF-alfa at day +5 matched T-cell activation. Concomitantly naïve T-cells gain effecr-memory phenotype and migrated from spleen to peripheral lymphoid organs. Thus, in the very early phase of GHVD following Bu-Cy conditioning donor, DCs play an important role in the activation of donor T cells. Subsequently, donor naïve T-cells gain effector-memory phenotype and initiate GVHD
Cyclophosphamide alters the gene expression profile in patients treated with high doses prior to stem cell transplantation.
BACKGROUND: Hematopoietic stem cell transplantation is a curative treatment for several haematological malignancies. However, treatment related morbidity and mortality still is a limiting factor. Cyclophosphamide is widely used in condition regimens either in combination with other chemotherapy or with total body irradiation. METHODS: We present the gene expression profile during cyclophosphamide treatment in 11 patients conditioned with cyclophosphamide for 2 days followed by total body irradiation prior to hematopoietic stem cell transplantation. 299 genes were identified as specific for cyclophosphamide treatment and were arranged into 4 clusters highly down-regulated genes, highly up-regulated genes, early up-regulated but later normalized genes and moderately up-regulated genes. RESULTS: Cyclophosphamide treatment down-regulated expression of several genes mapped to immune/autoimmune activation and graft rejection including CD3, CD28, CTLA4, MHC II, PRF1, GZMB and IL-2R, and up-regulated immune-related receptor genes, e.g. IL1R2, IL18R1, and FLT3. Moreover, a high and significant expression of ANGPTL1 and c-JUN genes was observed independent of cyclophosphamide treatment. CONCLUSION: This is the first investigation to provide significant information about alterations in gene expression following cyclophosphamide treatment that may increase our understanding of the cyclophosphamide mechanism of action and hence, in part, avoid its toxicity. Furthermore, ANGPTL1 remained highly expressed throughout the treatment and, in contrast to several other alkylating agents, cyclophosphamide did not influence c-JUN expression
COL-3-Induced Molecular and Ultrastructural Alterations in K562 Cells
Tetracycline-3 (4-dedimethylamino sancycline, COL-3) is a non-antibiotic tetracycline derivative. COL-3 exerts potent anti-metalloproteinase activity and its antitumor effects have been reported both in vitro and in vivo. In this study, we investigated the mechanisms of COL-3-induced cytotoxicity in a chronic myeloid leukemia cell line, K562, characterized by the BCR–ABL fusion protein. COL-3 induced K562 cell death in a concentration-dependent manner with an IC50 of 10.8 µg/mL and exhibited features of both apoptosis and necrosis. However, flow cytometry analysis revealed that necrotic cells dominated over the early and late apoptotic cells upon treatment with COL-3. Transmission electron microscopy analysis in combination with Western blotting (WB) analysis revealed early mitochondrial swelling accompanied by the early release of cytochrome c and truncated apoptosis inducing factor (tAIF). In addition, ultrastructural changes were detected in the endoplasmic reticulum (ER). COL-3 affected the levels of glucose-regulated protein-94 (GRP94) and resulted in m-calpain activation. DNA double strand breaks as a signature for DNA damage was also confirmed using an antibody against γH2AX. WB analyses did not demonstrate caspase activation, while Bcl-xL protein remained unaffected. In conclusion, COL-3-induced cell death involves DNA damage as well as mitochondrial and ER perturbation with features of paraptosis and programmed necrosis
Exposure to Mycobacteria Primes the Immune System for Evolutionarily Diverse Heat Shock Proteins
During stress conditions, such as infection, the synthesis of heat shock proteins (HSPs) in microorganisms is upregulated. Since a high degree of homology exists within each HSP family, we postulated that exposure to microorganisms could prime the immune system for evolutionarily diverse HSPs. We tested this hypothesis by priming mice with three microorganisms, namely, Mycobacterium bovis BCG, Mycobacterium vaccae, and Chlamydia pneumoniae. After this, mice received a dose of the various HSPs. We found that BCG and M. vaccae but not C. pneumoniae primed the immune system for the induction of secondary immunoglobulin G (IgG) responses to most of the HSPs tested. Analysis of the IgG1 and IgG2a profile and gamma interferon production induced against the HSPs revealed the induction of a mixture of responses. We also observed that sera from mice treated with M. vaccae and HSP70 were cross-reactive, but no antibody complexes were observed in their kidneys, which frequently are targets for autoantibody reactions. Our findings add further support for the use of HSPs as effective vaccine adjuvants
The role of programmed cell death ligand-1 (PD-L1/CD274) in the development of graft versus host disease.
Programmed cell death ligand-1 (PD-L1/CD274) is an immunomodulatory molecule involved in cancer and complications of bone marrow transplantation, such as graft rejection and graft-versus-host disease. The present study was designed to assess the dynamic expression of this molecule after hematopoietic stem cell transplantation in relation to acute graft-versus-host disease. Female BALB/c mice were conditioned with busulfan and cyclophosphamide and transplanted with either syngeneic or allogeneic (male C57BL/6 mice) bone marrow and splenic cells. The expression of PD-L1 was evaluated at different time points employing qPCR, western blot and immunohistochemistry. Allogeneic- but not syngeneic-transplanted animals exhibited a marked up-regulation of PD-L1 expression in the muscle and kidney, but not the liver, at days 5 and 7 post transplantation. In mice transplanted with allogeneic bone marrow cells, the enhanced expression of PD-L1 was associated with high serum levels of IFNγ and TNFα at corresponding intervals. Our findings demonstrate that PD-L1 is differently induced and expressed after allogeneic transplantation than it is after syngeneic transplantation, and that it is in favor of target rather than non-target organs at the early stages of acute graft-versus-host disease. This is the first study to correlate the dynamics of PD-L1 at the gene-, protein- and activity levels with the early development of acute graft-versus-host disease. Our results suggest that the higher expression of PD-L1 in the muscle and kidney (non-target tissues) plays a protective role in skeletal muscle during acute graft-versus-host disease
Effect of cyclophosphamide treatment on ANGPTL1 and c-JUN.
<p>The relative expression as measured by qRTPCR (normalized to GAPDH) of disease-related up-regulated genes, ANGPTL1 (A) and c-JUN (B), compared to normal subjects. Cy treatment did not affect the up-regulation of ANGPTL1 and c-JUN.</p
Gene clusters in relation to Cy treatment.
<p>The expression of Cy treatment specific genes at 6(30 h) was normalized to the pre-treatment and divided to the following clusters: Cluster 1 showed highly down-regulated genes throughout the treatment (A). Cluster 2 showed highly up-regulated genes throughout the treatment (B). Cluster 3 showed early up-regulated but later normalized genes (C). Cluster 4 showed moderately up-regulated genes (D).</p
Pathways reported in each cluster and genes involved in each of them.
<p>Pathways reported in each cluster and genes involved in each of them.</p