31 research outputs found

    Development of a new treatment for preterm birth complications using amniotic fluid stem cell therapy

    Get PDF
    This paper describes the current status of studies and clinical trials on the use of mesenchymal stem cells (MSCs) and amniotic fluid stem cells (AFSCs) for complications of preterm birth (PTB), an urgent issue in the perinatal field. PTB is a serious challenge in clinical medicine that is increasing globally, and effective control of its complications is necessary for newborns’ subsequent long life. Classical treatments are inadequate, and many patients have PTB complications. A growing body of evidence provided by translational medicine and others indicates that MSCs, and among them, the readily available AFSCs, may be useful in treating PTB complications. AFSCs are the only MSCs available prenatally and are known to be highly antiinflammatory and tissue-protective and do not form tumors when transplanted. Furthermore, because they are derived from the amniotic fluid, a medical waste product, no ethical issues are involved. AFSCs are an ideal cell resource for MSC therapy in neonates. This paper targets the brain, lungs, and intestines, which are the vital organs most likely to be damaged by PTB complications. The evidence to date and future prospects with MSCs and AFSCs for these organs are described

    Prevention of hypoglycemia by intermittent-scanning continuous glucose monitoring device combined with structured education in patients with type 1 diabetes mellitus : A randomized, crossover trial

    Get PDF
    Aims: We conducted a randomized, crossover trial to compare intermittent-scanning continuous glucose monitoring (isCGM) device with structured education (Intervention) to self-monitoring of blood glucose (SMBG) (Control) in the reduction of time below range. Methods: This crossover trial involved 104 adults with type 1 diabetes mellitus (T1DM) using multiple daily injections. Participants were randomly allocated to either sequence Intervention/Control or sequence Control/Intervention. During the Intervention period which lasted 84 days, participants used the first-generation FreeStyle Libre (Abbott Diabetes Care, Alameda, CA, USA) and received structured education on how to prevent hypoglycemia based on the trend arrow and by frequent sensor scanning (≥10 times a day). Confirmatory SMBG was conducted before dosing insulin. The Control period lasted 84 days. The primary endpoint was the decrease in the time below range (TBR; <70 mg/dL). Results: The time below range was significantly reduced in the Intervention arm compared to the Control arm (2.42 ± 1.68 h/day [10.1 %±7.0 %] vs 3.10 ± 2.28 h/day [12.9 %±9.5 %], P = 0.012). The ratio of high-risk participants with low blood glucose index >5 was significantly reduced (8.6 % vs 23.7 %, P < 0.001). Conclusions: The use of isCGM combined with structured education significantly reduced the time below range in patients with T1DM

    Structural parameter dependence of directed current generation in GaAs nanowire-based electron Brownian ratchet devices

    Get PDF
    We investigated the structural parameter dependence of the directed current in GaAs-nanowire-based Brownian ratchet devices. The directed current was generated by flashing a ratchet potential array repeatedly using multiple asymmetric gates with a periodic signal. The amount of current in the fabricated device increased as the nanowire width W decreased, which contradicted the theoretical model. The current also depended on the number of the gates N, when N was smaller than 6. We discussed the obtained results in terms of the structural parameter dependence of carrier transfer efficiency and the effect of electron reservoirs on current generation in flashing ratchet operation

    Effective kissing stent to severe stenosis of the superior mesenteric artery replacing the common hepatic artery

    No full text
    Abstract Background Endovascular therapy (ET) for chronic mesenteric ischemia (CMI) is a effective treatment to relieve the symptoms, such as postprandial abdominal pain, food fear, and progressive weight loss. CMI is not known to be caused by rare anatomical variation of severe stenosis of the superior mesenteric artery (SMA), with replaced the common hepatic artery to the SMA. The treatment of such a rare anatomical variation using ET technique has not been discribed. ET with kissing stent technique can be applied to the CMI accompanied with a rare anatomical variation. Case presentation An 80-year-old woman presented with a history of intermittent, severe epigastric pain. Over the preceding 5 months, she had less severe and self-resolving epigastric pain 15–30 min after every meal. Abdominal computed tomography (CT) showed severe calcification of the SMA origin and bubble-like intramural gas of the small bowel with the contrasted wall pneumoperitoneum. As the patient did not have peritonitis, a conservative approach was used. Angiography performed after symptom resolution showed severe stenosis of the SMA origin with calcification, and the SMA had replaced the common hepatic artery. ET with the kissing stent technique, namely stenting to the SMA and common hepatic artery, was successfully performed and relieved the patient’s symptoms. Conclusions CMI cause the symptoms of Pneumatosis intestinalis (PI) and pneumoperitoneum. Severe stenosis of the SMA origin replacing the common hepatic artery is a rare anatomic variation, which can cause CMI symptoms. ET with a kissing stent is the effective treatment option for the mesenteric artery stenosis accompanied with such rare anatomical variation

    Human Amniotic Fluid Stem Cells Ameliorate Thioglycollate-Induced Peritonitis by Increasing Tregs in Mice

    No full text
    Mesenchymal stem cells (MSCs) affect immune cells and exert anti-inflammatory effects. Human amniotic fluid stem cells (hAFSCs), a type of MSCs, have a high therapeutic effect in animal models of inflammation-related diseases. hAFSCs can be easily isolated and cultured from amniotic fluid, which is considered a medical waste. Hence, amniotic fluid can be a source of cells for MSC therapy of inflammatory diseases. However, the effect of hAFSCs on acquired immunity in vivo, especially on regulatory T cells, has not yet been fully elucidated. Therefore, in this study, we aimed to understand the effects of hAFSCs on acquired immunity, particularly on regulatory T cells. We showed that hAFSCs ameliorated the thioglycollate-induced inflammation by forming aggregates with host immune cells, such as macrophages, T cells, and B cells in the peritoneal cavity. Further, the regulatory T cells increased in the peritoneal cavity. These results indicated that, in addition to helping the innate immunity, hAFSCs could also aid the acquired immune system in vivo against inflammation-related diseases by increasing regulatory T cells
    corecore