583 research outputs found

    社会安全学体系化の試み

    Get PDF
    学部の展

    Encounter with The Great East Japan Earthquake

    Get PDF
    特集 東日本大震

    Lifecycle management of orphan drugs approved in Japan

    Get PDF
    [Background] The development of orphan drugs (ODs) is challenging from both development and business perspectives because of their small patient populations. To overcome such business challenges, lifecycle management (LCM), which maximizes profits by increasing sales and extending product lifetimes, is important to overcome the business challenges arising from their small patient populations. To clarify the activities of the LCM of ODs, we investigated additional indications that contribute to market expansion and marketing exclusivity using the patent extension and re-examination system of ODs approved in Japan between 2004 and 2019. [Results] The 203 ODs consisting of 173 active ingredients were approved in Japan between 2004 and 2019. Sixty-eight (39%) of the 173 active ingredients have additional indications, of which 57 have at least one non-OD indication. Three-fourths of the 203 ODs had patent rights, and most of them included substance or use claims. Although the re-examination period for most ODs was 10 years after the approval, most patents had a longer duration than the re-examination period. [Conclusions] Pharmaceutical companies were actively adding non-OD indications and were emphasizing the use of patent rights by registering extensions of substance or use patents for exclusive marketing periods. These results indicate that LCM through the addition of indications and registration of patent extensions is carried out as a strategy for many ODs in Japan, similar to the LCM of general non-ODs

    Relation between Mixing Processes and Properties of Lithium-ion Battery Electrode-slurry

    Get PDF
    The mixing process of electrode-slurry plays an important role in the electrode performance of lithium-ion batteries (LIBs). The dispersion state of conductive materials, such as acetylene black (AB), in the electrode-slurry directly influences the electronic conductivity in the composite electrodes. In this study, the relation between the mixing process of electrode-slurry and the internal resistance of the composite electrode was investigated in combination with the characterization of the electrode-slurries by the rheological analysis and the alternating current (AC) impedance spectroscopy. Some of the electrode-slurries showed higher value and gentler slope of the dynamic storage modulus in the low-angular-frequency region and higher thixotropic index than the others depending on the way of the mixing process and the AB content, agreeing with the low electronic volume resistivities of the corresponding composite electrodes and the electrode-slurries, which indicates the AB network growth. The results suggested that the low-viscosity state when AB and active electrode material are mixed contributes to the dispersive AB network. (C) The Author(s) 2021. Published by ECSJ

    Molecular Interaction Between the Microenvironment and FLT3/ITD+ AML Cells Leading to the Refractory Phenotype

    Get PDF
    Internal tandem duplication mutations in the FLT3 gene (FLT3/ITD) are detected in 10–15% of children and 30% of adult patients with AML and are associated with an extremely poor prognosis. Although several antagonists against FLT3/ITD have been developed, few of them are effective for the treatment of FLT3/ITD+ AML because of the emergence of drug-resistant cells. The mechanisms responsible for drug resistance include the acquisition of additional mutations in the FLT3 gene and/or activation of other prosurvival pathways such as microenvironment-mediated resistance. Recent studies have strongly suggested that the reciprocal interaction between the microenvironment and AML cells generates specific machinery that leads to chemoresistance. This chapter describes the molecular mechanism responsible for the refractory phenotype of FLT3/ITD+ AML cells resulting from the communication between the microenvironment and FLT3/ITD+ leukemia cells. Understanding this mechanism enables the discovery of novel and innovative therapeutic interventions for resistant FLT3/ITD+ AML

    Survivin Selectively Modulates Genes Deregulated in Human Leukemia Stem Cells

    Get PDF
    ITD-Flt3 mutations are detected in leukemia stem cells (LSCs) in acute myeloid leukemia (AML) patients. While antagonizing Survivin normalizes ITD-Flt3-induced acute leukemia, it also impairs hematopoietic stem cell (HSC) function, indicating that identification of differences in signaling pathways downstream of Survivin between LSC and HSC are crucial to develop selective Survivin-based therapeutic strategies for AML. Using a Survivin-deletion model, we identified 1,096 genes regulated by Survivin in ITD-Flt3-transformed c-kit+, Sca-1+, and lineageneg (KSL) cells, of which 137 are deregulated in human LSC. Of the 137, 124 genes were regulated by Survivin exclusively in ITD-Flt3+ KSL cells but not in normal CD34neg KSL cells. Survivin-regulated genes in LSC connect through a network associated with the epidermal growth factor receptor signaling pathway and falls into various functional categories independent of effects on apoptosis. Pathways downstream of Survivin in LSC that are distinct from HSC can be potentially targeted for selective anti-LSC therapy

    Internal Tandem Duplication in FLT3 Attenuates Proliferation and Regulates Resistance to the FLT3 Inhibitor AC220 by Modulating p21Cdkn1a and Pbx1 in Hematopoietic Cells

    Get PDF
    Internal tandem duplication (ITD) mutations in the Fms-related tyrosine kinase 3 (FLT3) gene (FLT3-ITD) are associated with poor prognosis in patients with acute myeloid leukemia (AML). Due to the development of drug resistance, few FLT3-ITD inhibitors are effective against FLT3-ITD+ AML. In this study, we show that FLT3-ITD activates a novel pathway involving p21Cdkn1a (p21) and pre-B cell leukemia transcription factor 1 (Pbx1) that attenuates FLT3-ITD cell proliferation and is involved in the development of drug resistance. FLT3-ITD up-regulated p21 expression in both mouse bone marrow c-kit+-Sca-1+-Lin- (KSL) cells and Ba/F3 cells. The loss of p21 expression enhanced growth factor-independent proliferation and sensitivity to cytarabine as a consequence of concomitantly enriching the S+G2/M phase population and significantly increasing the expression of Pbx1, but not Evi-1, in FLT3-ITD+ cells. This enhanced cell proliferation following the loss of p21 was partially abrogated when Pbx1 expression was silenced in FLT3-ITD+ primary bone marrow colony-forming cells and Ba/F3 cells. When FLT3-ITD was antagonized with AC220, a selective inhibitor of FLT3-ITD, p21 expression was decreased coincident with Pbx1 mRNA up-regulation and a rapid decline in the number of viable FLT3-ITD+ Ba/F3 cells; however, the cells eventually became refractory to AC220. Overexpressing p21 in FLT3-ITD+ Ba/F3 cells delayed the emergence of cells that were refractory to AC220, whereas p21 silencing accelerated their development. These data indicate that FLT3-ITD is capable of inhibiting FLT3-ITD+ cell proliferation through the p21/Pbx1 axis and that treatments that antagonize FLT3-ITD contribute to the subsequent development of cells that are refractory to a FLT3-ITD inhibitor by disrupting p21 expression

    Korean Railway Safety Act (1)

    Get PDF

    Korean Railway Safety Act (II)

    Get PDF
    corecore