203 research outputs found

    RIL-StEp: epistasis analysis of rice recombinant inbred lines (RILs) reveals candidate interacting genes that control seed hull color and leaf chlorophyll content

    Get PDF
    Characterizing epistatic gene interactions is fundamental for understanding the genetic architecture of complex traits. However, due to the large number of potential gene combinations, detecting epistatic gene interactions is computationally demanding. A simple, easy-to-perform method for sensitive detection of epistasis is required. Due to their homozygous nature, use of recombinant inbred lines excludes the dominance effect of alleles and interactions involving heterozygous genotypes, thereby allowing detection of epistasis in a simple and interpretable model. Here, we present an approach called RIL-StEp (recombinant inbred lines stepwise epistasis detection) to detect epistasis using single-nucleotide polymorphisms in the genome. We applied the method to reveal epistasis affecting rice (Oryza sativa) seed hull color and leaf chlorophyll content and successfully identified pairs of genomic regions that presumably control these phenotypes. This method has the potential to improve our understanding of the genetic architecture of various traits of crops and other organisms

    Whole-genome analysis of recombinant inbred rice lines reveals a quantitative trait locus on chromosome 3 with genotype-by-environment interaction effects

    Get PDF
    Elucidating genotype-by-environment interactions is fundamental for understanding the interplay between genetic and environmental factors that shape complex traits in crops. Genotype-by-environment interactions are of practical importance, as they determine the performance of cultivars grown in different environments, prompting the need for an efficient approach for evaluating genotype-by-environment interactions. Here, we describe a method for genotype-by-environment detection that involves comparing linear mixed models. This method successfully detected genotype-by-environment interactions in rice (Oryza sativa) recombinant inbred lines grown at 3 locations. We identified a quantitative trait locus (QTL) on chromosome 3 that was associated with heading date, grain number, and leaf length. The effect of this QTL on plant growth–related traits varied with environmental conditions, indicating the presence of genotype-by-environment interactions. Therefore, our method enables a powerful genotype-by-environment detection pipeline that should facilitate the production of high-yielding crops in a given environment

    Interaction between Pheromone and Its Receptor of the Fission Yeast Schizosaccharomyces pombe Examined by a Force Spectroscopy Study

    Get PDF
    Interaction between P-factor, a peptide pheromone composed of 23 amino acid residues, and its pheromone receptor, Mam2, on the cell surface of the fission yeast Schizosaccharomyces pombe was examined by an atomic force microscope (AFM). An AFM tip was modified with P-factor derivatives to perform force curve measurements. The specific interaction force between P-factor and Mam2 was calculated to be around 120 pN at a probe speed of 1.74 μm/s. When the AFM tip was modified with truncated P-factor derivative lacking C-terminal Leu, the specific interaction between the tip and the cell surface was not observed. These results were also confirmed with an assay system using a green fluorescent protein (GFP) reporter gene to monitor the activation level of signal transduction following the interaction of Mam2 with P-factor

    Genome Analysis Revives a Forgotten Hybrid Crop Edo-dokoro in the Genus Dioscorea

    Get PDF
    忘れられた作物「えどどころ」の起原 --ゲノム解析が明らかにする青森県三八上北地域に残る栽培イモの歴史--. 京都大学プレスリリース. 2022-08-10.A rhizomatous Dioscorea crop “Edo-dokoro” was described in old records of Japan, but its botanical identify has not been characterized. We found that Edo-dokoro is still produced by four farmers in Tohoku-machi of Aomori Prefecture, Japan. Rhizomes of Edo-dokoro are a delicacy to the local people and are sold in the markets. Morphological characters of Edo-dokoro suggest its hybrid origin between the two species, D. tokoro and D. tenuipes. Genome analysis revealed that Edo-dokoro is likely originated by hybridization of a male D. tokoro to a female D. tenuipes, followed by a backcross with a male plant of D. tokoro. Edo-dokoro is a typical minor crop possibly maintained for more than 300 years but now almost forgotten from the public. We hypothesize that there are many such uncharacterized genetic heritages passed over generations by small scale farmers that await serious scientific investigation for future use and improvement by using modern genomics information

    High-performance pipeline for MutMap and QTL-seq

    Get PDF
    [Summary] Bulked segregant analysis implemented in MutMap and QTL-seq is a powerful and efficient method to identify loci contributing to important phenotypic traits. However, the previous pipelines were not user-friendly to install and run. Here, we describe new pipelines for MutMap and QTL-seq. These updated pipelines are approximately 5–8 times faster than the previous pipeline, are easier for novice users to use, and can be easily installed through bioconda with all dependencies. [Availability] The new pipelines of MutMap and QTL-seq are written in Python and can be installed via bioconda. The source code and manuals are available online (MutMap: https://github.com/YuSugihara/MutMap, QTL-seq: https://github.com/YuSugihara/QTL-seq)

    Multiple myeloma with high adenosine deaminase expression

    Get PDF
    A 50-year-old man with immunoglobulin A type multiple myeloma (MM) was referred to our hospital after bortezomib therapy. He had high alkaline phosphatase and lactate dehydrogenase levels. Computed tomography showed osteolytic and osteoblastic bone lesions. Response to salvage chemotherapy was temporary, and he developed a right pleural effusion with high adenosine deaminase (ADA) levels. He died from bleeding associated with a pelvic bone fracture 9 months later. ADA mRNA expression and ADA secretion of the MM cells from the patient were higher than those from myeloma cell lines tested. Clinical relevance of high ADA expression in MM cells is warranted

    Busulfan for lymphoma with CNS involvement

    Get PDF
    The prognosis of relapsed or refractory lymphoma with central nervous system (CNS) involvement remains poor because of the lack of anticancer drugs with sufficient CNS penetration. [Case 1] A 65-year-old man was diagnosed with Stage IV mantle cell lymphoma. After two courses of chemotherapy and autologous hematopoietic stem cell (HSC) collection, urinary retention with fever developed. Cerebrospinal fluid analysis revealed leptomeningeal involvement, which was refractory to high-dose methotrexate therapy. Autologous peripheral blood stem cell transplantation (ASCT) was performed, followed by intravenous busulfan (ivBU), cyclophosphamide, and etoposide ; thereafter, no relapse has been detected for over six years. [Case 2] A 40-year-old woman with right lower hemiplegia was diagnosed with primary CNS lymphoma. Although four courses of high-dose methotrexate therapy were administered, the cerebral tumor increased in size. HSCs were collected after methotrexate therapy, and ASCT was performed in addition to conditioning using ivBU, cyclophosphamide, and etoposide, followed by whole-brain and local boost irradiation. She achieved complete remission, but relapsed two years after ASCT. High-dose ivBU-containing conditioning regimens with ASCT may be useful for refractory B-cell lymphoma with CNS involvement

    Rice apoplastic CBM1-interacting protein counters blast pathogen invasion by binding conserved carbohydrate binding module 1 motif of fungal proteins

    Get PDF
    いもち病からイネを守る細胞外タンパク質 (CBMIP) の発見 --CBMIPはイネの細胞壁を守り、いもち病菌の感染を抑える--. 京都大学プレスリリース. 2022-09-30.When infecting plants, fungal pathogens secrete cell wall-degrading enzymes (CWDEs) that break down cellulose and hemicellulose, the primary components of plant cell walls. Some fungal CWDEs contain a unique domain, named the carbohydrate binding module (CBM), that facilitates their access to polysaccharides. However, little is known about how plants counteract pathogen degradation of their cell walls. Here, we show that the rice cysteine-rich repeat secretion protein OsRMC binds to and inhibits xylanase MoCel10A of the blast fungus pathogen Magnaporthe oryzae, interfering with its access to the rice cell wall and degradation of rice xylan. We found binding of OsRMC to various CBM1-containing enzymes, suggesting that it has a general role in inhibiting the action of CBM1. OsRMC is localized to the apoplast, and its expression is strongly induced in leaves infected with M. oryzae. Remarkably, knockdown and overexpression of OsRMC reduced and enhanced rice defense against M. oryzae, respectively, demonstrating that inhibition of CBM1-containing fungal enzymes by OsRMC is crucial for rice defense. We also identified additional CBM-interacting proteins (CBMIPs) from Arabidopsis thaliana and Setaria italica, indicating that a wide range of plants counteract pathogens through this mechanism
    corecore