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Abstract

Elucidating genotype-by-environment interactions is fundamental for understanding the interplay between genetic and environmental 
factors that shape complex traits in crops. Genotype-by-environment interactions are of practical importance, as they determine the per
formance of cultivars grown in different environments, prompting the need for an efficient approach for evaluating genotype-by-envir
onment interactions. Here, we describe a method for genotype-by-environment detection that involves comparing linear mixed models. 
This method successfully detected genotype-by-environment interactions in rice (Oryza sativa) recombinant inbred lines grown at 3 lo
cations. We identified a quantitative trait locus (QTL) on chromosome 3 that was associated with heading date, grain number, and leaf 
length. The effect of this QTL on plant growth–related traits varied with environmental conditions, indicating the presence of genotype- 
by-environment interactions. Therefore, our method enables a powerful genotype-by-environment detection pipeline that should facili
tate the production of high-yielding crops in a given environment.
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Introduction
Understanding the genetic potential of crops is important for 
achieving higher yields. Quantitative trait locus (QTL) mapping 
and genome-wide association studies (GWASs) are popular ap
proaches for identifying genetic factors controlling complex traits, 
and they have been used to identify major genomic regions asso
ciated with agronomically important traits in crops (Huang et al. 
2010; Yano et al. 2019; Alqudah et al. 2020; Li et al. 2020). However, 
crop phenotypes are affected not only by genes but also by their in
teractions (epistasis) (Soyk et al. 2017; Tayefeh et al. 2018; Liu and 
Yan 2019; Sakai et al. 2021). In addition, the effects of genetics on 
some traits vary with environmental conditions, a phenomenon 
known as genotype-by-environment (GxE) interaction (El-Soda 
et al. 2014; de Leon et al. 2016). Identifying GxE interactions is im
portant to better understand the factors controlling phenotypic 
variation in crops, which could serve as a guide for the cultivation 
of a genotype suitable to a given environment.

Rice (Oryza sativa) is an important staple crop worldwide. Grain 
yield in rice is affected by GxE interactions (Blanche et al. 2009; 
Sharifi et al. 2017). Whereas most studies have focused on identifying 
the environmental conditions that produce consistently high yields 
for a given promising rice cultivar, only a few have sought to identify 

specific genes or QTLs that are affected by environmental factors 
(Manneh et al. 2007; Ghandilyan et al. 2009; Xu et al. 2014). To further 
understand the effects of GxE interactions on rice traits, geneticists 
need a comprehensive, systematic method for GxE detection that 
employs whole-genome sequence information.

Statistical models and methods have been developed to iden
tify GxE interactions (Malosetti et al. 2013; El-Soda et al. 2014). 
Various principal component analysis (PCA)–based approaches 
have been used to infer the adaptability of a given genotype to a 
specific environment; these approaches include the additive 
main effects and multiplicative interaction (AMMI) model and 
the genotype main effects and GxE (GGE) model (Zobel et al. 
1988; Yan et al. 2000). Mixed models have also been developed to 
interpret GxE interactions in a large number of genotypes (Smith 
et al. 2005). QTL-by-environment interaction (QxE) models are 
useful for dissecting GxE interactions for individual genetic com
ponents (Malosetti et al. 2004; Thomas 2010; El-Soda et al. 2014). 
Several reports have proposed that recombinant inbred lines 
(RILs) and their genotype information are suitable for mapping 
genes and QTLs and for identifying loci with GxE interactions 
(Botto and Coluccio 2007; Ghandilyan et al. 2009; Fournier-Level 
et al. 2013; Phuong et al. 2019). However, these studies identified 
GxE interaction effects by comparing QTL mapping results across 
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multiple environmental conditions or by applying statistical mod
els incorporating only a limited number of markers. Therefore, 
statistical approaches are needed to directly identify GxE inter
action effects using whole-genome sequence information specific 
to a particular RIL population.

In this study, we developed a linear mixed model incorporating 
genetic effects as a random polygenic effect to identify QTLs with 
GxE interaction effects in RIL populations. We focused on rice, first 
developing RILs and obtaining the whole-genome sequence of each 
RIL. We planted identical sets of RILs in 3 different locations to iden
tify genomic regions that show GxE effects. We then compared the 
results of GWAS across multiple environments and applied linear 
mixed models based on single nucleotide polymorphism (SNP) gen
otypes of the RIL populations. Using this method, we successfully 
identified a rice locus with significant GxE interaction effects on 
heading date, grain number, and leaf length.

Materials and methods
Plant materials and growth conditions
The japonica rice (Oryza sativa) cultivar “Hitomebore” was used as the 
common parent and was crossed to 5 cultivars: the tropical japonica 
rice cultivars “URASAN1” and “REXMONT”, the aus rice cultivars 
“TUPA 121-3” and “C8005”, and the indica rice cultivar “TAKANARI” 
from the National Agriculture and Food Research Organization 
World Rice Core Collection (Kojima et al. 2005) and our collection. 
For each cross, the resulting F1 plant was self-pollinated to obtain 
the F2 generation, which was used to generate the F9 generation by 
the single seed descent method (Fig. 1a). The code name and number 
of lines for each RIL are as follows: RIL1 (Hitomebore × URASAN1), 
143 lines; RIL2 (Hitomebore × REXMONT), 187 lines; RIL3 
(Hitomebore × TUPA121-3), 204 lines; RIL4 (Hitomebore × C8005), 
248 lines; and RIL5 (Hitomebore × TAKANARI), 139 lines. These RIL 
populations were planted in 3 trial locations in Japan: Kuroishi (lati
tude 40°66′ N; longitude 140°59′ E, altitude 31 m) in Aomori 
Prefecture, Kitakami (latitude 39°35′ N; longitude 141°11′ E, altitude 
89 m) in Iwate Prefecture, and Koriyama (latitude 37°47′ N; longitude 
140°37′ E, altitude 217 m) in Fukushima Prefecture (Fig. 1b). Research 
trials with all RILs were conducted in 2018 and 2019. RIL1 was also 
studied in 2020. Fifteen seeds per RIL and their parents were germi
nated in water and sown in 2 × 2-cm plug trays filled with nursing cul
ture soil. At 25–30 days after germination, seedlings from each RIL 
and parental line were transplanted into a paddy field (1 seedling 
per hill) at a density of 22.2–24.1 hills per m2. Basal fertilizer was ap
plied at a rate of 30 kg N, 30 kg P, and 30 kg K per ha.

Phenotyping
To elucidate the effect of GxE interactions on rice yields, we used grain 
number and heading date as yield-related phenotypes and leaf length 
as a plant growth–related phenotype. We counted grain number in a 
panicle on the main culm for all RILs in 2018 and 2019. Grain number 
of RIL1 was also measured in 2020. We also recorded heading date and 
leaf length for all RILs in 2018 and 2019. Heading date was counted as 
days to heading after sowing. The day when 50% of the individuals in a 
RIL showed panicle emergence was defined as the heading date of that 
RIL. Grain number was counted from a panicle in the main culm. Leaf 
length was measured using the flag leaf of the main culm. For all 
phenotypic data, 6 individuals per RIL were examined; their mean va
lues were used for all analyses.

Genotyping
To obtain the genotypes of the RILs, we performed whole-genome 
resequencing of the parental lines using the Illumina HiSeq 

platform with 150-bp paired-end reads and all the RILs using the 
Illumina NextSeq500 platform with 75-bp paired-end reads. We fil
tered and trimmed the short-read sequences using PRINSEQ 
(Schmieder and Edwards 2011) and FaQCs (Lo and Chain 2014). 
The quality-checked short reads were aligned against the reference 
genome using Burrows-Wheeler Aligner (Li and Durbin 2009). We 
used the sequence of Os-Nipponbare-Reference-IRGSP-1.0 as the 
reference genome (Kawahara et al. 2013). After mapping, we sorted 
and prepared index files from BAM files using samtools (Li et al. 
2009). These BAM files were subjected to variant calling with 
bcftools (Narasimhan et al. 2016). Finally, we imputed the data 
from missing variants based on the genotypes of the parental cul
tivars using LB-impute (Fragoso et al. 2016). We identified 447,328 
SNPs between the 2 parents for RIL1; 554,100 SNPs for RIL2; 
1,518,711 SNPs for RIL3; 1,410,025 SNPs for RIL4; and 1,417,949 
SNPs for RIL5. For QTL analysis and GxE detection, we selected 1 
SNP per 10-kb interval and used 25,781 SNPs for RIL1; 29,521 
SNPs for RIL2; 34,520 SNPs for RIL3; 32,379 SNPs for RIL4; and 
32,256 SNPs for RIL5. These genotyping data were deposited in 
Zenodo (10.5281/zenodo.7213803).

Environmental factors
To evaluate the environmental factors that vary across the 3 loca
tions, we examined their soil composition and weather data. We 
sampled soil from these locations in spring 2019 before fertiliza
tion and measured pH, electrical conductivity (EC), cation ex
change capacity (CEC), and chemical composition of available 
plant nutrients (NH4, NO3, CaO, MgO, K2O, and available phos
phorus P2O5) in the soil. We also obtained weather data including 
temperature, precipitation, and sunshine duration (hours without 
cloud cover) for 2018 to 2020 from the AMeDAS data set of the 
Japan Meteorological Agency (Supplementary Tables 1 and 2).

GWAS
To identify SNPs in the genomic regions harboring the major QTLs, 
we used a GWAS approach based on Mixed Linear Model analysis 
(Yu et al. 2006). We used the R package “GWASpoly” (Rosyara et al. 
2016) to identify genomic regions that showed a significant associ
ation with the phenotypic effect. GWAS was performed separately 
on the phenotypic data for each RIL population in each location 
and each year to identify genomic regions significantly associated 
with a given trait. We calculated the false discovery rate (FDR) by 
Benjamini–Hochberg procedure based on the P values obtained by 
“GWASpoly” (Benjamini and Hochberg 1995). We extracted all SNPs 
with FDR < 0.01 that were significantly associated with the trait.

Estimation of variance components and 
broad-sense heritability
To estimate the variance components of a random genotype ef
fect, a random location effect as an environmental effect, and a 
GxE random effect, we considered the following mixed model as 
previously described (Jarquín et al. 2017):

y = μ + Zu + We + Vx + ϵ 

u ∼ N(0, Kσ2
u), e ∼ N(0, σ2

e ), x ∼ N(0, [ZKZ′] ◦ [WW′]σ2
x), ϵ ∼ N(0, σ2

ϵ ) 

where y is the n × 3-vector of phenotypic values from n samples at 
each of the 3 locations; μ is the overall intercept term; u is a vector 

of the random polygenic effect; Kσ2
u is the variance of the random 

polygenic effect, where K is the additive genetic relationship ma

trix; e is the vector of a random environmental effect; σ2
e is the 
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Fig. 1. Correlation coefficients of phenotypic values among the trial locations. a) Scheme used to generate the RIL populations. b) Geographical map 
showing the locations of the trials: Aomori, Iwate, and Fukushima, Japan. c) Multiple scatterplots showing pairwise comparisons of the phenotypic values 
for heading date, grain number, and leaf length. Upper plots are for RIL1, and lower plots are for RIL3. Each scatterplot shows the relationships of 
phenotypic values between 2 of the 3 trial locations. The y-axis shows the phenotypic values of RILs at the first location, and the x-axis shows the 
corresponding values at the second location. Correlation coefficients (r) are shown above the plots. Diagonal histograms show the distribution of 
phenotypic values of RILs at each trial location. Each plot shows the proportion of variance components of genotype effect (VG), environmental effect (VE), 
GxE interaction effect (VGxE), and residual effect (Vϵ). These plots are based on the 2018 data set.
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variance of the random environmental effect; x is the vector of the 

random effect in GxE interactions; σ2
x is the variance of the GxE 

component; ϵ is the residual error and σϵ is the residual error vari
ance; and Z, W, and V are the incidence matrices of 1s and 0s re
lating y to u, e, and x, respectively.

To estimate broad-sense heritability (H2) based on estimated 
variance components, we used the following equation as previ
ously described (Holland et al. 2010):

H2 =
σ2

u

σ2
u + σ2

e /ne + σ2
x/ne + σ2

ϵ /ne 

where ne is the number of trial locations. The other symbols are 
described above.

After the identification of candidate SNPs with GxE effect, to es
timate variance components of the random genotype effect, en
vironmental effect, and the SNP genotype × environment 
interaction (SxE) random effect with a fixed SNP effect, we consid
ered the following mixed model:

y = μ + Xβ + Zu + We + Sγ + ϵ 

u ∼ N(0, Kσ2
u), e ∼ N(0, σ2

e ), γ ∼ N(0, σ2
γ ), ϵ ∼ N(0, σ2

ϵ ) 

where β is the fixed effect of a SNP; γ is the vector of the random 

effect of the genotype × environment interaction effect; σ2
γ is the 

variance of the genotype × environment interaction effect; and 
X and S are the incidence matrices of 1s and 0s relating y to β 
and γ, respectively. The other symbols are described above.

The models described above were fitted to the data and vari
ance components were estimated using the BGLR package 
(Pérez-Rodríguez and de los Campos 2014). The script was depos
ited in GitHub (https://github.com/slt666666/GxE_analysis).

Detection of GxE
To detect genomic regions that interact with environmental fac
tors, we used a model comparison-based approach. We generated 
linear mixed models incorporating 1 SNP at a time sampled from 
the entire genome, with polygenic effect and environmental effect 
as the random effects. Model 2 considered the deviation of the ef
fect of a given SNP by the trial location from the overall SNP effect, 
whereas model 1 did not. Models 1 and 2 were compared using the 
likelihood-ratio test to assess goodness-of-fit. Specifically, we con
sidered the following linear models:

Model 1:y = μ + Xβ + Zu + We + ϵ 

u ∼ N(0, Kσ2
u), e ∼ N(0, σ2

e ), ϵ ∼ N(0, σ2
ϵ ) 

Model 2:y = μ + X(β + We1) + Zu + We0 + ϵ 

e0
e1

􏼒 􏼓

∼ 0
0

􏼒 􏼓

, σ2
e0

σe0 ,e1
σ2

e1

􏼒 􏼓􏼒 􏼓

where y is the n × 3-vector of phenotypic values from n samples 
at each of the 3 locations; μ is the overall intercept term; e0 is the 

vector of a random environmental effect and σ2
e0 

is the variance of 

the random environmental effect; e1 is the random deviation of 

the effect of a given SNP by environment and σ2
e1 

is the variance 

of the random deviation; and σe1 ,e0 is the covariance of e0 and e1. 
The other symbols are described above.

In the likelihood-ratio test, the test statistic is −2 log Λ, where Λ is 
the likelihood-ratio comparing models 1 and 2. The distribution of 
the test statistic is asymptotically a chi-squared distribution with 
degrees of freedom calculated as the difference of the number of 
parameters between models 1 and 2. Whether adding the GxE effect 
in model 2 leads to a performance gain that cannot be obtained by 
chance can be assessed by evaluating the distribution of the test 
statistic under the null hypothesis that the data are drawn only 
from model 1. When the likelihood-ratio test between models 1 
and 2 showed statistically significant P values, adding the GxE effect 
of the SNP to the model (model 2) resulted in a significantly im
proved fit over model 1. Thus, we considered that the phenotypic va
lue was affected by the interaction between the genomic region 
containing the SNPs and environmental factors. We calculated 
FDR by the Benjamini–Hochberg procedure based on the P values 
of the likelihood-ratio test of goodness-of-fit of all SNPs (Benjamini 
and Hochberg 1995). We extracted SNPs with FDR < 0.01 as candi
date SNPs that significantly interact with the environment.

To fit a mixed-effect model to the data and to calculate the 
FDRs of the likelihood-ratio test, we used our original R scripts 
based on the R packages “lme4qtl” and “rrBLUP” (Endelman 
2011; Ziyatdinov et al. 2018). The scripts were deposited in 
GitHub (https://github.com/slt666666/GxE_analysis).

Analysis of environmental factors
To evaluate the environmental factors involved in GxE interaction 
effects in detail, we used a linear mixed model. We tested the sig
nificance of the coefficient for the interaction between each envir
onmental factor and the genotype of the locus that was identified 
by the initial GxE analysis. We considered the following linear 
mixed model for each environmental factor (soil component or 
weather condition):

Model 3:y = μ + Xβ + EβE + Zu + ϵ 

Model 4:y = μ + X(β + Eβi) + EβE + Zu + ϵ 

where E is an n-vector of environmental factor values for n samples, 
βE is the fixed effect of an environmental factor, and βi is the fixed 
effect of an interaction between the genotype of the locus and the 
environmental factor. The other symbols are described above. To 
evaluate the significance of βi, models 3 and 4 were compared using 
the likelihood-ratio test as described for the GxE detection above. 
Whether adding the interaction between the genotype of the locus 
and the environmental factor in model 4 leads to a performance 
gain that cannot be obtained by chance can be assessed by evaluat
ing the distribution of the test statistic under the null hypothesis 
that the data are drawn only from model 3. We calculated P values 
of the likelihood-ratio test for each environmental factor for each 
trait and each year. We calculated FDR by the Benjamini– 
Hochberg procedure based on the P values of all environmental fac
tors (Benjamini and Hochberg 1995). We used our own R scripts 
based on the R packages “lme4qtl” and “rrBLUP.” To apply this mod
el, we calculated the mean values of each weather condition data 
point for 0–30 days, 15–45 days, and 30–60 days prior to the heading 
date for each sample, year, and location. The scripts were deposited 
in GitHub (https://github.com/slt666666/GxE_analysis).

Identifying the candidate gene associated with 
phenotypes involved in GxE interactions
To identify the gene with variable effects on heading date, grain 
number, and leaf length, we surveyed genes located in the 
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genomic region identified by the GxE analysis (FDR < 0.01). We ex
tracted genes with Trait Ontology (TO) terms related to the pheno
types based on the RAP-DB annotation as candidate genes (Sakai 
et al. 2013; Jupp et al. 2015). We used the following TO terms: 
days to heading (TO:0000137), flowering time (TO:0002616), days 
to maturity (TO:0000469), and inflorescence development trait 
(TO:0000621) for the phenotype of heading date; grain number 
(TO:0002759), filled grain number (TO:0000447), grain yield 
(TO:0000396), and nitrogen sensitivity (TO:0000011) for the pheno
type of grain number; and leaf length (TO:0000135), leaf develop
ment trait (TO:0000655), and leaf shape (TO:0000492) for the 
phenotype of leaf length.

Results
Genetic effects on grain number vary depending 
on the trial location
To investigate whether the effects of genotype on phenotypes var
ied across the trial locations, we calculated the correlation coeffi
cients of different phenotypic values of each RIL in each pair of 
trial locations. We also estimated the broad-sense heritability 
and the variance components of the genetic effect, the effect of lo
cation as the environmental effect, and the GxE effect for each RIL 
population. The RIL1 population showed a strong correlation for 
heading date among the 3 locations (r = 0.82–0.94) with most of 
the phenotypic variance for heading date explained by genetic 
and environmental effects (Fig. 1c, Supplementary Tables 3 and 4). 
This result indicates that variation of heading date in RIL1 is solely 
based on the genotypes of the RIL and the trial location (environ
ment). Other RIL populations also showed high correlation coeffi
cients for heading date among trial locations, with similar 
proportions of variance components (Supplementary Tables 3 
and 4). By contrast, grain number in RIL1 showed a lower correl
ation coefficient between the Iwate and Fukushima locations 
(r = 0.47–0.61) (Fig. 1c, Supplementary Table 3). Grain number in 
the RIL2 population also showed a lower correlation coefficient 
(r = 0.58–0.67) between Iwate and Fukushima (Supplementary 
Table 3). Estimated variance components in RIL1 and RIL2 indi
cated that over 10% of the phenotypic variance for grain number 
was explained by the GxE effect, suggesting that the variation in 
grain number in RIL1 and RIL2 is based not only on the genotype 
but also on the GxE interaction (Fig. 1c, Supplementary Table 4). 
However, grain number in the RIL3, RIL4, and RIL5 populations 
showed higher correlation coefficients (r = 0.73–0.85) (Fig. 1c, 
Supplementary Table 3). All RIL populations showed lower corre
lations for leaf length among the 3 trial locations (r = 0.28–0.76) 
with higher residual variance than other variance components 
(Fig. 1c, Supplementary Tables 3 and 4). Therefore, the variation 
for leaf length in the RIL populations is based not only on geno
types and trial locations. In summary, heading date appears to 
be mainly controlled by genetic factors and the trial locations (en
vironment) in all RIL populations, whereas grain number might be 
controlled by both genetic factors and GxE interaction in RIL1 and 
RIL2, and leaf length might be controlled by not only genetic fac
tors and the trial location but also factors unexplained by the stat
istical model.

To explore the genetic factors controlling the phenotypes of the 
RIL1 population at the 3 trial locations, we first conducted a GWAS 
separately for each location and attempted to identify the genomic 
regions involved in each phenotype. We identified a genomic region 
significantly associated with heading date (FDR < 0.01) on chromo
some 3 (Fig. 2a, Supplementary Fig. 1, Table 5). This association was 
highly significant and was consistently identified at all 3 locations 

(Fig. 2a). By contrast, we detected no consistent genomic regions 
across the 3 locations associated with grain number or leaf length 
(Fig. 2, b and c, Supplementary Fig. 1, Table 5). However, at Iwate 
in 2018, we identified a genomic region on chromosome 3 signifi
cantly associated with grain number (Fig. 2b, Supplementary 
Table 5). The interval defined by this genomic region overlapped 
with that identified for heading date (Fig. 2, a and b). At Aomori in 
2019, this genomic region was associated with leaf length 
(Supplementary Fig. 1, Supplementary Table 5). In summary, we 
identified a genomic region on chromosome 3 for heading date 
that also affected grain number and leaf length. However, we 
only detected this genomic region in 1 of the 3 locations for grain 
number. Therefore, the effect of the genomic region on grain num
ber and leaf length appears to depend on environmental factors, 
suggesting the presence of a GxE interaction effect.

We also conducted a GWAS using other RIL populations. We 
identified genomic regions on chromosome 3 in RIL2 significantly 
(FDR < 0.01) associated with heading date at all 3 locations 
(Supplementary Fig. 1, Supplementary Table 5). This genomic re
gion overlapped with that identified in the RIL1 population 
(Supplementary Fig. 1, Supplementary Table 5). These results in
dicate that heading date may be affected by the same genomic re
gion in the RIL1 and RIL2 populations. We also identified genomic 
regions on chromosome 7 in RIL3 and chromosome 1 in RIL4 sig
nificantly (FDR < 0.01) associated with grain number at all 3 loca
tions (Supplementary Fig. 1, Supplementary Table 5). Moreover, 
we identified genomic regions on chromosome 3 in RIL3 and on 
chromosome 7 in RIL5 for heading date and genomic regions on 
chromosomes 1 and 5 in RIL3 for leaf length. Each of these genom
ic regions was detected at a single location, although we observed 
weak peaks for P values over the same genomic regions at the 
other 2 locations (Supplementary Fig. 1). The results of this 
GWAS using the other RIL populations and other trial years are 
summarized in Supplementary Fig. 1 and Supplementary Table 5.

A newly developed statistical method identifies a 
GxE interaction at a locus on rice chromosome 3
To detect GxE interactions affecting phenotypic traits, we applied 
a linear mixed model comparison-based approach to 25,781 SNPs 
in the RIL1 population distributed across the entire genome. After 
calculating P values for each SNP, we focused on those genomic 
regions with SNPs showing FDR < 0.01. We identified a genomic re
gion on chromosome 3 (962,390–1,923,995 bp) as a candidate re
gion showing significant GxE interaction effects for heading date 
in 2018 and 2019 (Fig. 3a, Supplementary Table 6). This genomic 
region overlapped with the QTL region identified by GWAS for 
heading date. We also applied this approach to grain number 
and leaf length and identified a genomic region on chromosome 
3 (398,385–2,209,113 bp) as a candidate region showing significant 
GxE interaction effects for grain number in 2018, 2019, and 2020 
(Fig. 3b, Supplementary Table 6). We also identified a genomic re
gion on chromosome 3 (962,390–1,798,026 bp) as a candidate re
gion showing significant GxE interaction effects for leaf length in 
2018 and 2019 (Fig. 3c, Supplementary Table 6). These regions 
are close to the GxE region identified for heading date and the 
QTL for heading date (Fig. 2a).

To investigate the effects of the identified genomic region at the 
3 locations, we plotted phenotypic values of the RIL1 population for 
the 2 possible genotypes at the SNP with the lowest P value, as re
vealed by the model comparison-based approach. We constructed 
a boxplot that shows the effect of the SNP at chr03:1235072 on 
heading date (Fig. 3a). When the genotype at this SNP was from 
the Hitomebore parent, the phenotypic values tended to be high 
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at all 3 locations. In 2018, the effect of the SNP on heading date ap
peared to be greater at Aomori than at the other locations. By con
trast, this locus did not have consistent effects on grain number or 
leaf length across the 3 locations (Fig. 3, b and c, Supplementary 
Fig. 2). In 2018, when the SNP at chr03:1235072 was from the 
Hitomebore parent, grain number tended to be high at Iwate but 
low at Fukushima (Fig. 3b). Grain number did not differ between 
the 2 possible genotypes for this SNP at Aomori (Fig. 3b). In 2019, 
when the SNP at chr03:1235072 was from the Hitomebore parent, 
grain number tended to be high at Aomori and Iwate and low at 
Fukushima (Supplementary Fig. 2). In 2020, when the SNP at 
chr03:1235072 was from the Hitomebore parent, grain number 
tended to be high at Aomori and Iwate, whereas we observed no 
great difference between the 2 possible SNPs at Fukushima 
(Supplementary Fig. 2).

Leaf length showed a tendency similar to that of grain number. 
In 2018, when the SNP at chr03:1235072 was from the Hitomebore 
parent, leaf length tended to be high at Iwate but low at 

Fukushima. Leaf length did not differ between the 2 possible 
SNPs at Aomori (Fig. 3c). In 2019, when the SNP at chr03:1235072 
was from the Hitomebore parent, leaf length tended to be 
high at Aomori and Iwate (Supplementary Fig. 2). Leaf length 
did not differ between the 2 possible SNPs at Fukushima 
(Supplementary Fig. 2). These results indicate that the SNP at 
chr03:1235072 affects heading date, grain number, and leaf length 
and that the observed effects vary with location. Therefore, differ
ences in environmental factors at the trial locations appear to be 
important for evaluating the genetic effect of the SNP at 
chr03:1235072 on heading date, grain number, and leaf length.

We also performed GxE analyses using the other RIL popula
tions and identified 10 genomic regions showing significant GxE 
effects (Supplementary Fig. 3, Supplementary Table 6). Leaf 
length in RIL2 in 2018 showed a tendency similar to that in RIL1 
across trial locations (Supplementary Fig. 4). Heading date of 
RIL2 in 2019 and RIL4 in 2018 also revealed a genomic region 
on chromosome 3 as a candidate region with a GxE effect. This 

Fig. 2. GWAS of heading date, grain number, and leaf length in the RIL1 population at the 3 trial locations. Manhattan plots showing the associations of 
SNPs with heading date a), grain number b), and leaf length c), as calculated by GWASpoly (Rosyara et al. 2016). The y-axis shows the −log10 (p) value of 
each SNP. The x-axis shows the genomic position. The dotted line indicates the significance threshold (FDR < 0.01). The results from each trial location are 
framed with different colors. Only SNPs located near chr03:1235072 exceeded the threshold FDR < 0.01 at all trial locations for heading date. SNPs located 
near chr03:1235072 exceeded the threshold only at Iwate for grain number. These plots are based on the 2018 data set.
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genomic region was close to the region identified in RIL1 
(Supplementary Figs. 3 and 4, Supplementary Table 6). 
Therefore, we observed a GxE effect associated with the genomic 
region on chromosome 3 identified in RIL1 for several traits in the 
other RILs. Heading date of RIL2 in 2019 also revealed other gen
omic regions on chromosomes 3, 7, and 10 as candidate regions 
with GxE effects (Supplementary Fig. 3). We also detected the 

genomic region on chromosome 10 for a GxE effect on heading 
date in RIL3 in 2019 (Supplementary Fig. 4). When the genotype 
at this genomic region was from the Hitomebore parent, the pheno
typic values tended to be high at all 3 locations. The effect of this 
genomic region on heading date appeared to be greater at Aomori 
than at the other 2 locations for RIL2 and 3 (Supplementary Fig. 4). 
The effect of other candidate genomic regions on chromosomes 

Fig. 3. Identification of SNPs with GxE interaction effects and variation of genetic effects at the 3 trial locations. The Manhattan plots on the left show the 
positions of SNPs exhibiting significant GxE effects, as revealed by the likelihood-ratio test comparing 2 alternative models with/without a GxE 
interaction. The y-axis shows the −log10 (p) value of each SNP. The x-axis shows the genomic position. The colors indicate the trial years. The dotted lines 
indicate the significance threshold (FDR < 0.01). SNPs located near chr03:1235072 exceeded the threshold FDR < 0.01 for all traits. Boxplots on the right 
show the phenotypic values of RILs with different genotypes at SNP chr03:1235072 at the 3 trial locations. The horizontal line represents the median 
value. Box range is the first and third quartiles. The whiskers extend to the last data points less than the third quantile + 1.5 times the interquartile range 
(IQR) and the first data point greater than the first quantile −1.5 times the IQR. The x-axis shows the genotype of the SNP at chr03:1235072. The y-axis 
shows the phenotypic values. The results from each trial location are framed with different colors. Each row shows the result for each phenotype; a) 
Heading date. b) Grain number. c) Leaf length. These plots are based on the 2018 data set.
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3 and 7 showed a similar tendency for heading date when the gen
omic region was from the Hitomebore parent: Heading date 
tended to be low at Aomori and Iwate with a greater effect than 
at Fukushima (Supplementary Fig. 4). Grain number of RIL4 in 
2019 identified a genomic region on chromosome 1 as a candidate 
region with GxE effect (Supplementary Fig. 3). When the genotype 
at this SNP was from the C8005 parent, the phenotypic values 
tended to be high at all 3 locations. The effect of this genomic re
gion on grain number appeared to be greater at Fukushima than at 
the other 2 locations (Supplementary Fig. 4). Leaf length in 2018 of 
RIL2 revealed a genomic region on chromosome 7 as another can
didate region with GxE effect (Supplementary Fig. 3). When the 
genotype at this genomic region was from the REXMONT parent, 
the phenotypic values tended to be high only at Iwate 
(Supplementary Fig. 4). Heading date in 2018 of RIL5 revealed a 
genomic region on chromosome 9 as a candidate region with 
GxE effect (Supplementary Fig. 3). When the genotype at this gen
omic region was from the TAKANARI parent, the phenotypic va
lues tended to be high at all 3 locations. The effect of this 
genomic region on heading date appeared to be greater at 
Fukushima than at the other 2 locations (Supplementary Fig. 4).

To assess the scale of the GxE effect identified by the above 
SNPs, we investigated the variance component of the identified 
SNP × environment interaction (SxE) effect in the phenotypic 
variance. We estimated the variance components of the genetic 
effect, the environmental effect, and the SxE effect for each 
candidate genomic region when considering a fixed SNP effect. 
The SxE effect of SNPs on chromosome 3 between 962,390 
and 1,798,026 bp explained 3.2–4.8% of the phenotypic vari
ance when excluding a fixed SNP effect for heading date 
(Supplementary Table 7). The SxE effect of this genomic region 
also explained 17.0–35.1% of the phenotypic variance excluding 
a fixed SNP effect for grain number and 22.8–31.2% for leaf length 
(Supplementary Table 7). These SNPs also showed similar vari
ance components for the SxE effect on heading date and leaf 
length in RIL2 (Supplementary Table 7). The SxE effect of the 
SNP on chromosome 1 at 5,597,235 bp explained 7.6% of the 
phenotypic variance excluding a fixed SNP effect for grain number 
in RIL4 (Supplementary Table 7). The SxE effects of other candi
date regions explained less than 3% of the phenotypic variance 
(Supplementary Table 7). In total, the estimated variance compo
nents suggested that the genomic region on chromosome 3 be
tween 962,390 and 1,798,026 bp consistently shows a highly 
significant SxE effect on growth-related traits in RIL1 and RIL2. 
Therefore, we mainly focused on this genomic region for the in
vestigation of candidate genes and important environmental 
components.

We surveyed genes located in the interval of chromosome 3 be
tween 962,390 and 1,798,026 bp. This genomic region contains 
multiple genes that may be related to the phenotypes character
ized in this study, such as EARLY FLOWERING-COMPLETELY 
DOMINANT (Ef-cd), SUPPRESSOR OF OVEREXPRESSION OF CO 1 
(OsSOC1), and NIN-LIKE PROTEIN 1 (OsNLP1) (Supplementary 
Table 8). Genes that may be related to the phenotypes located in 
the other genomic regions identified by GxE analysis are summar
ized in Supplementary Table 8.

Identifying environmental factors related to the 
GxE effect
Our GWAS and GxE analyses showed that the genotypic variation 
at the SNP on chromosome 3:1235072 affected heading date, grain 
number, and leaf length and that this genetic effect varied de
pending on the location (Fig. 3). To identify environmental factors 

with influence on the genetic effects of these 3 traits, we surveyed 
different environmental factors at the 3 trial locations. We ob
tained data for soil composition in the paddy field before fertiliza
tion in 2019 and weather condition data for 0–30, 15–45, and 30–60 
days prior to heading date in the trial years for each location 
(Supplementary Tables 1 and 2). We generated a linear mixed 
model for each environmental factor to evaluate which environ
mental factors affect the genetic effect of the locus.

The lowest temperature during the 15–45 days prior to heading 
was a statistically significant environmental factor contributing to 
GxE effects of the chromosome 3 locus on heading date in RIL1, 
RIL2, and RIL4 (Supplementary Table 9). For both grain number 
and leaf length, sunshine duration showed a statistically signifi
cant effect during the 15–45 days and 30–60 days prior to heading 
(Supplementary Table 9). The highest temperature during the 
30–60 days prior to heading was the most significant factor among 
weather conditions affecting heading date in 2019 (Supplementary 
Table 9). For grain number, precipitation during the 0–30 days 
prior to heading and temperature during the 15–45 days and 30– 
60 days prior to heading were statistically significant factors 
(Supplementary Table 9). Among soil properties, pH, EC, and NO3 

and K2O concentrations were significantly associated with grain 
number and leaf length (Supplementary Table 9). Taken together, 
our GxE detection method revealed that the function of the locus 
on chromosome 3 is possibly affected by the lowest and highest 
temperatures, precipitation, sunshine duration, and the soil pH, 
EC, and NO3 and K2O concentrations at each location. The results 
of the analysis of environmental factors for other candidate gen
omic regions are summarized in Supplementary Table 9.

Discussion
In this study, we identified a QTL on rice chromosome 3 with a GxE 
interaction effect for heading date and plant growth traits such as 
grain number and leaf length. We grew RIL populations at 3 locations 
and used GWAS as well as a linear mixed model comparison-based 
approach to identify a significantly associated genomic region with 
a genetic effect that varied with environmental factors.

This study demonstrates the power of our linear mixed model 
comparison-based approach to identify genomic regions involved 
in GxE interactions. Although our initial GWAS trial did not iden
tify GxE interactions in heading date or leaf length, when we ap
plied our new approach to these traits, we identified a locus 
with a GxE interaction effect for these 2 phenotypes (Figs. 2, a 
and c, 3, a and c). This result indicates that our approach has 
the power to detect a single locus with a significant GxE inter
action effect when applied to well-genotyped RILs. Our approach 
focuses on 1 SNP at a time to address the effect of a GxE inter
action. However, crop traits are usually controlled by multiple 
genes that interact with each other (Li et al. 1997; Wang et al. 
2012; Sakai et al. 2021). Therefore, to predict GxE interactions in
volving multiple loci, a more complex model might be needed 
that incorporates additional variables including other QTLs and 
interaction effects (Malosetti et al. 2013).

We identified a QTL on chromosome 3 (1,235,072 bp) affecting 
heading date; this locus also showed a GxE interaction effect for 
heading date in the RIL1, RIL2, and RIL4 populations (Fig. 2a and 
3, a and Supplementary Fig. 3). This genomic region contains the 
Ef-cd locus and OsSOC1 (Supplementary Table 8). Ef-cd generates 
a long noncoding RNA that positively regulates the expression of 
the flowering activator gene OsSOC1 (Lee et al. 2004; Bian et al. 
2011; Fang et al. 2019). The Ef-cd allele, which was identified in in
dica rice line 6442S-7, accelerates maturation (Deng et al. 2002; 
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Fang et al. 2019). Here, we showed that when the genotype of this 
locus was from the Hitomebore parent, heading date was delayed 
compared to the heading date conferred by the allele from the 
tropical japonica cultivar URASAN1 at all 3 trial locations (Fig. 3a). 
Our results are also in line with the finding of Fang et al. that the 
effect of Ef-cd on heading date depends on environmental factors 
(Fig. 3a) (Fang et al. 2019). Our results suggest that the Ef-cd locus of 
tropical japonica cultivar URASAN1 has a similar function as that of 
the indica cultivar.

The locus we identified also showed GxE interaction effects for 
grain number and leaf length (Fig. 3, b and c). Phenotypes related to 
plant growth and heading date are normally correlated because a 
long growth period leads to higher yields (Wang et al. 2018; Yu and 
Qian 2019). However, the Ef-cd locus causes a shortened matur
ation period with no yield penalty (Fang et al. 2019). We determined 
that when plants had the URASAN1 allele at this locus, their head
ing date was earlier compared to that of plants with the 
Hitomebore allele at all 3 trial locations (Fig. 3a). At Aomori and 
Fukushima, grain number and leaf length did not vary depending 
on heading date (Fig. 3, b and c), which is consistent with the 
finding that the Ef-cd locus accelerates maturation without a yield 
penalty (Fang et al. 2019). However, at the Iwate location, grain 
number and leaf length decreased with earlier heading date 
(Fig. 3). Therefore, our results suggest that the relationship be
tween Ef-cd-mediated maturation period and plant growth traits 
is modulated by environmental factors. Alternatively, it is possible 
that other genes located in this genomic region have effects on 
plant growth traits, with GxE interaction effects.

Several genes that facilitate nitrogen utilization are upregu
lated via the function of the Ef-cd locus (Fang et al. 2019). 
Nitrogen utilization is closely related to the photosynthetic cap
acity and yield potential of crops (Chen et al. 2016, 2017; Wang 
et al. 2018). Our analysis showed that the soil NO3 concentration 
might contribute to the GxE interaction effect of our QTL for grain 
number and leaf length (Supplementary Table 9). It is possible that 
the concentration of available nitrogen in the soil influences the 
genetic effects of the Ef-cd locus on grain number and leaf length. 
However, the genomic region identified by our GxE analysis also 
contains OsNLP1 (Supplementary Table 8), which enhances nitro
gen utilization to improve plant growth and grain yield under ni
trogen limitation conditions (Alfatih et al. 2020). Therefore, 
OsNLP1 is also a candidate with a possible GxE interaction effect 
on grain number and leaf length in the RIL1 population.

Several genes of unknown function are also located in the gen
omic region we identified. Furthermore, our analysis of environ
mental factors revealed several factors that showed significant 
GxE interaction effects, including lowest and highest tempera
tures, precipitation, and sunshine duration (Supplementary 
Table 9). Therefore, additional experiments under more con
trolled environmental conditions are needed to identify gene 
sets and environmental factors that contribute to the GxE inter
action. Identifying relevant environmental factors is easier under 
controlled laboratory conditions than under natural conditions; 
however, controlled conditions do not reflect the natural environ
ments where crops are actually grown (Anderson et al. 2014; de 
Leon et al. 2016). Thus, to understand the genetic and environmen
tal factors involved in GxE interactions, it will be important to 
measure the effects of environmental factors under both natural 
and controlled laboratory conditions (Xu 2016; Xu et al. 2017).

Our results show that the effects of QTLs on yield traits such as 
grain number vary with environmental factors (Fig. 3b). Numerous 
GWASs have identified QTLs associated with agronomically im
portant traits in rice (Huang et al. 2010; Yano et al. 2019). 

However, most of these studies did not consider environmental ef
fects or GxE interaction effects. Therefore, utilizing our approach 
to elucidate GxE interactions for the QTLs identified in these stud
ies could potentially identify strategies to improve crop yields.

In summary, we used a linear mixed model comparison-based 
approach to identify a locus on rice chromosome 3 showing GxE 
interaction effects on heading date, grain number, and leaf length. 
This genomic region showed genetic effects on phenotypes related 
to plant growth and yield traits, and these effects varied with envir
onmental factors. These results shed light on the genetic mechan
ism underlying the effects of GxE interactions on plant growth 
traits. In addition, our approach could facilitate the selection of ap
propriate combinations of rice cultivars for cultivation at different 
locations.

Data availability
Genotype, phenotype, weather, and soil composition data were de
posited in Zenodo (10.5281/zenodo.7213803). Scripts for GxE ana
lysis were deposited in GitHub (https://github.com/slt666666/ 
GxE_analysis). Supplemental material available at G3 online.
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