232 research outputs found

    Statistics of seismic cluster durations

    Full text link
    Using the standard ETAS model of triggered seismicity, we present a rigorous theoretical analysis of the main statistical properties of temporal clusters, defined as the group of events triggered by a given main shock of fixed magnitude m that occurred at the origin of time, at times larger than some present time t. Using the technology of generating probability function (GPF), we derive the explicit expressions for the GPF of the number of future offsprings in a given temporal seismic cluster, defining, in particular, the statistics of the cluster's duration and the cluster's offsprings maximal magnitudes. We find the remarkable result that the magnitude difference between the largest and second largest event in the future temporal cluster is distributed according to the regular Gutenberg-Richer law that controls the unconditional distribution of earthquake magnitudes. For earthquakes obeying the Omori-Utsu law for the distribution of waiting times between triggering and triggered events, we show that the distribution of the durations of temporal clusters of events of magnitudes above some detection threshold \nu has a power law tail that is fatter in the non-critical regime n<1n<1 than in the critical case n=1. This paradoxical behavior can be rationalised from the fact that generations of all orders cascade very fast in the critical regime and accelerate the temporal decay of the cluster dynamics.Comment: 45 pages, 15 figure

    A characteristic experiment of 4-phase segment type switched reluctance motor

    Get PDF
    Authors developed a novel segment type switched reluctance motor (SRM) as a rare earth less motor. The torque was increased by 40% and the radial force was decreased by 76% compared with the same size VR type SRM. Increasing the average torque, however, caused increasing torque ripple. In this paper we propose a 4-phase segment type switched reluctance motor and show that the torque ripple can be decreased by controlling the excitation current.15th International Conference on Electrical Machines and Systems, ICEMS 2012; Sapporo; Japan; 21 October 2012 ~ 24 October 201

    Two cases of possible neuro-Sweet disease with meningoencephalitis as the initial manifestation

    Get PDF
    We report 2 cases that were considered to be neuro-Sweet disease. They initially manifested with meningoencephalitis and no skin lesions, and rapidly improved with corticosteroid therapy. In both cases, patients complained of meningitic symptoms such as fever and headache, and HLA-B54 and -Cw1 turned out to be positive over the clinical course. Cerebrospinal fluid analysis showed increased levels of lymphocytes and protein. In case #1, fluid-attenuated inversion recovery (FLAIR), magnetic resonance imaging (MRI) and diffusion-weighted images (DWI) showed high-intensity signals in the right dorsal medulla oblongata, bilateral dorsal midbrain, and left thalamus. In case #2, FLAIR and DWI showed high-intensity signals in the bilateral cerebellar cortex and left caudate nucleus. Symptoms and MRI images were markedly improved in both cases after corticosteroid pulse therapy. According to published diagnostic criteria, these 2 cases were considered possible neuro-Sweet disease. These cases suggest that the combination of meningoencephalitis and HLA specificity is important to consider the possibility of neuro-Sweet disease, even without skin lesions

    Large magnetocaloric effect in sintered ferromagnetic EuS

    Get PDF
    We present magnetocaloric effect measurements of the ferromagnetic semiconductor EuS in the vicinity of its ordering temperature. Single phase EuS powder was synthesized by CS2 gas sulfurization of Eu2O3. A sintered compact with relative density over 95% was prepared by pulsed electric current sintering of the powder. Temperature and magnetic field dependence of the magnetization and specific heat were characteristic of a paramagnetic to ferromagnetic second order phase transition. The entropy change induced by an external magnetic field and the specific heat were both close to those of a single crystal. We obtained an entropy-temperature (S–T) diagram of the EuS sintered compact. Carnot cycle liquefaction of hydrogen using EuS was compared with several other materials, with results indicating that sintered EuS is an excellent magnetic refrigerant for hydrogen liquefaction. © 2016 Elsevier LtdEmbargo Period 36 month

    Persistent colonization of non-lymphoid tissue-resident macrophages by Stenotrophomonas maltophilia

    Get PDF
    Accumulating evidence has revealed that lymphoid tissue-resident commensal bacteria (e.g. Alcaligenes spp.) survive within dendritic cells. We extended our previous study by investigating microbes that persistently colonize colonic macrophages. 16S rRNA-based metagenome analysis using DNA purified from murine colonic macrophages revealed the presence of Stenotrophomonas maltophilia. The in situ intracellular colonization by S. maltophilia was recapitulated in vitro by using bone marrow-derived macrophages (BMDMs). Co-culture of BMDMs with clinically isolated S. maltophilia led to increased mitochondrial respiration and robust IL-10 production. We further identified a 25-kDa protein encoded by the gene assigned as smlt2713 (recently renamed as SMLT_RS12935) and secreted by S. maltophilia as the factor responsible for enhanced IL-10 production by BMDMs. IL-10 production is critical for maintenance of the symbiotic condition, because intracellular colonization by S. maltophilia was impaired in IL-10-deficient BMDMs, and smlt2713-deficient S. maltophilia failed to persistently colonize IL-10-competent BMDMs. These findings indicate a novel commensal network between colonic macrophages and S. maltophilia that is mediated by IL-10 and smlt2713

    ゼツアツ コウトウ ウンドウ ケイソク システム ニ ヨル パーキンソンビョウ カンジャ ノ エンゲ ドウタイ ヒョウカ

    Get PDF
    The different forms of flowers in a species have attracted the attention of many evolutionary biologists, including Charles Darwin. In Fagopyrum esculentum (common buckwheat), the occurrence of dimorphic flowers, namely short-styled and long-styled flowers, is associated with a type of self-incompatibility (SI) called heteromorphic SI. The floral morphology and intra-morph incompatibility are both determined by a single genetic locus named the S-locus. Plants with short-styled flowers are heterozygous (S/s) and plants with long-styled flowers are homozygous recessive (s/s) at the S-locus. Despite recent progress in our understanding of the molecular basis of flower development and plant SI systems, the molecular mechanisms underlying heteromorphic SI remain unresolved. By examining differentially expressed genes from the styles of the two floral morphs, we identified a gene that is expressed only in short-styled plants. The novel gene identified was completely linked to the S-locus in a linkage analysis of 1,373 plants and had homology to EARLY FLOWERING 3. We named this gene S-LOCUS EARLY FLOWERING 3 (S-ELF3). In an ion-beam-induced mutant that harbored a deletion in the genomic region spanning S-ELF3, a phenotype shift from short-styled flowers to long-styled flowers was observed. Furthermore, S-ELF3 was present in the genome of short-styled plants and absent from that of long-styled plants both in world-wide landraces of buckwheat and in two distantly related Fagopyrum species that exhibit heteromorphic SI. Moreover, independent disruptions of S-ELF3 were detected in a recently emerged self-compatible Fagopyrum species and a self-compatible line of buckwheat. The nonessential role of S-ELF3 in the survival of individuals and the prolonged evolutionary presence only in the genomes of short-styled plants exhibiting heteromorphic SI suggests that S-ELF3 is a suitable candidate gene for the control of the short-styled phenotype of buckwheat plants

    Thermal Expansion and Magnetostriction of Heavy Fermion CeRu2Si2 at Millikelvin Temperatures

    Get PDF
    金沢大学理工研究域数物科学系We have measured linear thermal expansion and magnetostriction of single crystal CeRu2Si2 that is well known as a heavy fermion metamagnetic compound. Thermal expansion and magnetostriction along the a-axis (B | a) and the c-axis (B | c) were measured by the capacitive dilatometer at temperatures down to 12 mK and in magnetic fields up to 9 T. We observed a strong anisotropy between a and c axis. In addition, negative deviations from Landau-Fermi liquid behavior for thermal expansion and magnetostriction coefficients were found below 50 mK and 0.4 T indicating non Fermi liquid behavior. © 2015 The Authors. Published by Elsevier B.V.出版社
    corecore