436 research outputs found
Production of doubly charged scalars from the decay of singly charged scalars in the Higgs Triplet Model
The existence of doubly charged Higgs bosons (H^{\pm\pm}) is a distinctive
feature of the Higgs Triplet Model (HTM), in which neutrinos obtain tree-level
masses from the vacuum expectation value of a neutral scalar in a triplet
representation of SU(2)_L. We point out that a large branching ratio for the
decay of a singly charged Higgs boson to a doubly charged Higgs boson via
H^\pm\to H^{\pm\pm}W^* is possible in a sizeable parameter space of the HTM.
From the production mechanism q'qbar\to W^* \to H^{\pm\pm}H^\mp the above decay
mode would give rise to pair production of H^{\pm\pm}, with a cross section
which can be comparable to that of the standard pair-production mechanism
qqbar\to \gamma^*,Z^* \to H^{++}H^{--}. We suggest that the presence of a
sizeable branching ratio for H^\pm\to H^{\pm\pm}W^* could significantly enhance
the detection prospects of H^{\pm\pm} in the four-lepton channel. Moreover, the
decays H^0\to H^\pm W^* and A^0\to H^\pm W^* from production of the neutral
triplet scalars H^0 and A^0 would also provide an additional source of H^\pm,
which can subsequently decay to H^{\pm\pm}.Comment: 13 pages, 3 figures, two figures added in v2, to appear in Physical
Review
Which solar neutrino data favour the LMA solution?
Assuming neutrino oscillations, global analyses of solar data find that the
LOW solution is significantly disfavoured, leaving LMA as the best solution.
But the preference for LMA rests on three weak hints: the spectrum of earth
matter effects (Super-Kamiokande sees an overall day/night asymmetry only at 1
sigma), the Cl rate (but LMA and LOW predictions are both above the measured
value), the Ga rate (newer data decrease towards the LOW predictions both in
GNO and SAGE). Only new data will tell us if LMA is the true solution.Comment: 4 pages, 2 figure
Review of Solar Neutrino Experiments
This paper reviews the constraints on the solar neutrino mixing parameters
with data collected by the Homestake, SAGE, GALLEX, Kamiokande,
SuperKamiokande, and SNO experiments. An emphasis will be given to the global
solar neutrino analyses in terms of matter-enhanced oscillation of two active
flavors. The results to-date, including both solar model dependent and
independent measurements, indicate that electron neutrinos are changing to
other active types on route to the Earth from the Sun. The total flux of solar
neutrinos is found to be in very good agreement with solar model calculations.
Future measurements will focus on greater accuracy for mixing parameters and on
better sensitivity to low neutrino energies.Comment: Prepared for the XXI International Symposium on Lepton and Photon
Interactions at High Energies, Fermilab, USA, 11-16 August 200
Symplectic Symmetry of the Neutrino Mass and the See-Saw Mechanism
We investigate the algebraic structure of the most general neutrino mass
Hamiltonian and place the see-saw mechanism in an algebraic framework. We show
that this Hamiltonian can be written in terms of the generators of an Sp(4)
algebra. The Pauli-Gursey transformation is an SU(2) rotation which is embedded
in this Sp(4) group. This SU(2) also generates the see-saw mechanism.Comment: 11 pages, REVTE
Measurement of the Solar Neutrino Capture Rate by the Russian-American Gallium Solar Neutrino Experiment During One Half of the 22-Year Cycle of Solar Activity
We present the results of measurements of the solar neutrino capture rate in
gallium metal by the Russian-American Gallium Experiment SAGE during slightly
more than half of a 22-year cycle of solar activity. Combined analysis of the
data of 92 runs during the 12-year period January 1990 through December 2001
gives a capture rate of solar neutrinos with energy more than 233 keV of 70.8
+5.3/-5.2 (stat.) +3.7/-3.2 (syst.) SNU. This represents only slightly more
than half of the predicted standard solar model rate of 128 SNU. We give the
results of new runs beginning in April 1998 and the results of combined
analysis of all runs since 1990 during yearly, monthly, and bimonthly periods.
Using a simple analysis of the SAGE results combined with those from all other
solar neutrino experiments, we estimate the electron neutrino pp flux that
reaches the Earth to be (4.6 +/- 1.1) E10/(cm^2-s). Assuming that neutrinos
oscillate to active flavors the pp neutrino flux emitted in the solar fusion
reaction is approximately (7.7 +/- 1.8) E10/(cm^2-s), in agreement with the
standard solar model calculation of (5.95 +/- 0.06) E10/(cm^2-s).Comment: English translation of article submitted to Russian journal Zh. Eksp.
Teor. Fiz. (JETP); 12 pages, 5 figures. V2: Added winter-summer difference
and 2 reference
- …