12 research outputs found

    Smart Drone with Renewable Smart System

    Get PDF
     In order to lessen its negative effects on the environment and to maintain its future operations in a clear, renewable, and sustainable manner, the aviation industry has begun developing designs that are dependent on alternative energy sources but also friendly to the environment and conventional energy. Solar energy has been suggested as a potential remedy. Aerial vehicles driven by solar energy are viewed as essential to limiting the consequences of global warming. In this study, a MATLAB/Simulink environment is used to simulate a mathematical model of a solar-powered BLDC motor of a UAV. under photovoltaic (PV) array systems, the phrase "maximum power point tracking" (MPPT) is crucial to ensuring that, under specific circumstances, the connected systems receive the greatest power output. This study simulates "fuzzy logic control," one of the preferred MPPT methods, using a solar-powered BLDC motor for an unmanned aerial vehicle (UAV) design. The PV cell, MPPT, buck-boost converter, and BLDC motor models in the cascade structure are simulated, tested, and the results are compared to the DC motor technical data. As a result, despite changes in irradiance, the results of mathematical model simulation overlap with motor technical reference values. A mathematical model of a solar-powered BLDC motor for a UAV is created and simulated using the MATLAB/Simulink environment, in contrast to prior solar-powered BLDC motor literature efforts. The fuzzy logic control MPPT technique is preferred for adjusting the maximum power output at the solar cell, and a buck-boost converter structure is connected between the MPPT and the BLDC motor mathematical model. It is recommended for usage in solar-powered UAV designs in the future

    Self and regulated governance simulation: Exploring governance for blockchain technology

    No full text
    Blockchain technology and blockchain applications sit at the cross-road of data science and Internet of Things applications where getting the governance right for this new technological paradigm is of core concern for leaders aspiring to realize smart city and living initiatives. In this research, we deploy computational simulation of self and regulated governance and extend the findings to the new blockchain technology ecosystems. We propose that getting the governance approach right is as important as getting the technological platform issues resolved

    Bio-inspired all-optical artificial neuromast for 2D flow sensing

    Get PDF
    We present the design, fabrication and testing of a novel all-optical 2D flow velocity sensor, inspired by a fish lateral line neuromast. This artificial neuromast consists of optical fibres inscribed with Bragg gratings supporting a fluid force recipient sphere. Its dynamic response is modelled based on the Stokes solution for unsteady flow around a sphere and found to agree with experimental results. Tuneable mechanical resonance is predicted, allowing a deconvolution scheme to accurately retrieve fluid flow speed and direction from sensor readings. The optical artificial neuromast achieves a low frequency threshold flow sensing of 5 mm s(-1) and 5 mu m s(-1) at resonance, with a typical linear dynamic range of 38 dB at 100 Hz sampling. Furthermore, the optical artificial neuromast is shown to determine flow direction within a few degrees
    corecore