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1. Introduction

The design of our optical sensor is directly inspired by 
a sensory modality used for flow detection by aquatic 
vertebrates. Fish and amphibians have an array of 
discrete mechanical sensors at their disposal called 
neuromasts, which are distributed along the head and 
trunk. With these neuromasts they can perceive a 1D 
projection of local fluid motion or flow relative to the 
body (Dijkgraaf 1963). The biophysical properties 
of neuromasts, such as the interplay of physiology, 
mechanics and fluid dynamics, have been studied 
intensively elsewhere (van Netten 2006, van Netten 
and McHenry 2013).

There are two types of neuromasts, each with their 
beneficial physical properties to help the fish perceive 
freestream (DC) and dynamic or oscillatory (AC) flow 
(Bleckmann et al 2004). Superficial neuromasts (SN) 
are present on the surface of the body and are in direct 
contact with the surrounding medium. They are tai-
lored to perceive steady (DC) and low frequency fluid 
flow velocity. The canal neuromasts (CN) are not in 
direct contact with the freestream flow, but are housed 
in internal canals. They are deflected through the  
pres sure difference via flexible membranes or pores in 
these canals, thereby effectively perceiving freestream 
(AC) fluid acceleration.

The perceived local fluid flow at each neuromast 
over time can be concatenated to a spatiotemporal 
flow pattern, which augments the fish sensory percep-
tion (Curcic-Blake and van Netten 2006). This enables 

fish to sense fluid perturbations generated by moving 
sources. In fish behavioural experiments, the lateral 
line has been shown to be instrumental in many spe-
cific behaviours, for instance, prey detection, school-
ing behaviour, and spatial orientation (Coombs and 
Montgomery 1999, Ghysen and Dambly-Chaudiere 
2007, Tao and Yu 2012).

In order to mimic this biological near-field  sensing, 
several implementations of artificial neuromast sen-
sors have been developed, which also measure a 1D 
projection of local fluid flow. Some sensors make 
use of hot wire anemometry (Pandya et al 2006, Yang 
et al 2006). Here, a suspended hot nanowire is cooled 
down by fluid flow. This links a measureable change 
in the temperature dependent resistance to fluid flow 
speed. Most artificial SNs, however, rely on sensing 
generated strain at the base of a deflecting lamella or  
canti lever structure in response to fluid flow. This 
design is favoured since the protruding structures 
escape unwanted boundary layer effects. Several tech-
niques used for strain sensing include lamella mechan-
ical micro-sensors (MEMs) (Fan et al 2002, McConney 
et al 2009, Yang et al 2007, 2010), ionic polymer-metal 
composites (IPMC) (Abdulsadda and Tan 2012, 2013, 
Chen et al 2013) and soft polymer membranes with-
out (Asadnia et al 2013) and with cantilever structures 
(Kottapalli et al 2014, Asadnia et al 2015, Kottapalli et al 
2015). A technical review of recent contributions to the 
field of artificial neuromast and artificial lateral lines 
(ALL) shows an increasing interest in this field (Liu 
et al 2016). In some cases, orientations of 1D-sensitive 
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to determine flow direction within a few degrees.
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sensors are alternated to sense multiple projections, 
allowing measuring flow perpendicular to the array, 
e.g. Yang et al (2010) and Ahrari et al (2017).

These SN designs rely on electric methods to 
operate in wet conditions. Because electric signals 
are susceptible to noise pickup over large distances, 
deployment of remote and large scale artificial lateral 
lines (ALL) has been somewhat limited. We there-
fore present an all-optical artificial neuromast which 
aims to address these issues. Our design utilises fibre 
Bragg gratings (FBGs), which allows the sensor data 
to be transmitted through fibre optic cables, thereby 
enhancing the scalability for all-optical ALLs. Further-
more, our design enables two dimensional fluid flow 
measurements, thus increasing the information per 
point measurement.

FBGs are sections in an optical fibre that have been 
modified to include a periodic variation in the refrac-
tive index along the fibre length. This structure reflects 
light at a specific wavelength that is determined by the 
spacing of the FBG structure. Stretching or compress-
ing the fibre changes the FBG structure spacing and 
therefore increases or decreases the reflected wave-
length. If the FBG is illuminated with a broadband 
optical source containing a wide range of wavelengths 
then the reflected (Bragg) wavelength can be inter-
preted as a function of the applied strain.

Different geometries consisting of two or more 
optical fibres glued together have been used in order 
to determine the curvature of the end position of the 
combined fibre structure (Araujo et al 2002). This 
requires the gratings to be located outside the neu-
tral (bending) axis of a cantilever structure. Exam-
ples of FBG curvature sensors (Flockhart et al 2003) 
and accelerometers (Fender et al 2007) have also been 
developed using multicore optical fibres with multiple 
cores positioned away from the neutral axis.

Cantilever Bragg grating flow sensing has been 
used for monitoring steady flow rates (Lu and Chen 
2008) and flow perturbations in response to a bluff 
body (Takashima et al 2004) in pipes. However, the 
dynamic properties of the sensors were not examined.

We first present a combined hydrodynamics and 
strain-structure model which enables sensor char-
acteristics such as its mechanical sensitivity and fre-
quency response to be predicted. Using steady state 
contact deflection, we infer the linear dynamic range 
of the sensor. Finally, through hydrodynamically stim-
ulating the sensor at different frequencies, we verify the 
sensor characteristics and employ a related method to 
reconstruct flow speeds from sensor readings.

2. Sensor and fluid model

2.1. Sensor design
The sensor physically resembles a fluid force recipient 
spherical body and a fibre support structure providing 
elastic coupling (figure 1(a)). To model the signal of a 
deflecting sensor, the elastic support is treated as an end-
loaded cantilever beam. Using Bernoulli’s beam equations, 
we model the support with length h, having a circular cross 
section, and possessing flexural stiffness EI (with Young’s 
modulus E and the second moment of area I).

2.2. FBG sensing
Equations (2.1) and (2.2) show the relationship 
between the force F applied at a beams tip, the resulting 
tip displacement magnitude ∆τ  and the generated 
strain ε at a distance d from the neutral bending axis 
at a height z from the fixed cantilever end (Benham 
et al 1996). The beam is compressed in the bending 
direction, which decreases strain. On the opposite side 
of the bending axis, where the sign of d is opposite, the 
beam stretches locally, increasing strain.

(a) (b)

Figure 1. Schematic overview of the sensor design, sensing principles and a picture of a sensor. (a) Deflecting the sensor results in 
local stretching in FBG1 and local compression in FBG2, while the neutral plane does not experience either. The reflectance spectra 
indicate the relation between local compression and stretching, the grating period and resulting detected wavelength peak shift. (b) 
The all-optical sensor has a height of 64.8 mm and spherical body radius of 4.00 mm. The fibre structure is glued into a 3D printed 
block, allowing four separate outgoing optical fibres.

Bioinspir. Biomim. 13 (2018) 026013
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∆τ =
F

EI

h3

3
 (2.1)

ε = −∆τ · 3 · d · (h − z)

h3
. (2.2)

This strain is measured locally via FBGs (figure 
1(a)). The FBG comprises a periodic refractive index 
modulation with a period on the scale of the wave-
length of light, such that it reflects light at the Bragg 
wavelength, λB, which is twice the inter-grating dis-
tance or grating period Λ.

ε =
∆h

h
=

∆Λ

Λ
=

∆λB

λB
. (2.3)

The Bragg wavelength changes as a function of 
strain (equation (2.3)) and temperature (Hill and 
Meltz 1997). The thermal effect can be compensated 
using differential strain configurations in which the 
thermal effect is common to all considered gratings 
(Flockhart et al 2003). Both the local Bragg wavelength 
shifts (i.e. sensor signal) and sensor deflections can be 
practically obtained to ascertain to what extent these 
are consistent with our present model. Common 
FBG wavelengths are in the communications band 
and we choose to work with gratings in this region of 
λB = 1560 ± 40 nm.

2.3. Isotropic sensor mechanics
The support comprises four discrete standard 
communication SMF-28 fibres, where the light 
guiding core is centred in a silica outer cladding. The 
mechanical properties of the fibre support structure 
are largely determined by the bending stiffness K 
which is, apart from sensor height, governed by the 
geometry and composition of the cross section of the 
elastic support.

Since the support matrix and fibres form a com-
posite material, its flexural stiffness EI depends on 
the mechanical properties of both materials. The 
added flexural stiffness of each fibre depends on its 

squared distance to the neutral bending axis (Benham 
et al 1996). Although the bending axis may rotate by 
deflecting the sensor in different directions, we show 
below that the flexural stiffness—and therefore the 
bending stiffness K—is independent of a variable 
bending axis offset α.

In order to show that the flexural stiffness is cir-
cular symmetric, only fibres 1 and 2 are considered, 
since the cross section is mechanically symmetrical 
above and below the bending axis. When the sensor 
is deflected over an axis with a variable offset angle α 
compared to the square lattice, the individual dis-
tances d1, d2 between the fibres and the bending axis 
change. But since they form sides of an identical right 
angle triangle, their summed squared distance to the 
bending axis (d2

1 + d2
2 = p2/2) remains constant and 

is independent of α. It is only dependent on a fixed 
p, the distance between two adjacent fibre cores. The 
flexural stiffness of the support is therefore mechani-
cally circularly symmetric; no preferred bending 
direction exists.

This results in a direction independent, or iso-
tropic, bending stiffness K determined at the tip of the 
fibre structure

K =
3π

4 · h3

[
Es · r4

s + 4
(
Ec − Es

)(
r2

c · p2 + r4
c

)]
,

 (2.4)

where rc and rs denote the cladding and support radii 
and Ec and Es their respective Young’s moduli.

Similarly, in this square lattice configuration 
(figure 2(b)), we show below that the magnitude of 

a differential strain vector 
−→
δε, generated by a fixed 

magnitude of tip deflection ∆τ , is not affected by a 
variable bending axis offset α. First, we can define 
the fibre distances d1 = cos (π/4 − α)

√
2 · p/2, 

d2 = sin (π/4 − α)
√

2 · p/2, d3 = −d1 and d4 = −d2. 
When deflecting the sensor, with an offset bending axis 
α, in the direction α+ π/2 and using equation (2.2), 
the Cartesian differential strain projections then 
become

(a) (b) (c)

Figure 2. Cross sections of the fibre support structure. (a) The schematic representation of the cross section is depicted with 
a variable bending axis with an angle α relative to the 2  ×  2 square lattice of fibres with side length p. (b) Indication of bending 
direction and resulting strain projection. (c) Phase contrast image of a polished sample of the cross section of the sensor tip in 
figure 1(b). Four fibres are embedded in an adhesive matrix. In the two fibres on the right, the core is made visible by propagating 
white light in the fibres to illuminate the core.

Bioinspir. Biomim. 13 (2018) 026013
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δεx = ε2 − ε1

= C
[
sin

(π
4
− α

)
− cos

(π
4
− α

)]

= C · −
√

2 · cos
(
α− π

2

)
,

 (2.5)

δεy = ε2 − ε3

= C
[
sin

(π
4
− α

)
+ cos

(π
4
− α

)]

= C · −
√

2 · sin
(
α− π

2

)
,

 (2.6)

with

C =
−∆τ · 3 · (h − z) ·

√
2 · p

2 · h3
, (2.7)

where εn denotes the generated strain at core number 
n. Then, working out the magnitude and angle of 
differential strain in polar coordinates, we find that

rδε = ∆τ · 3 · p · (h − z)

h3
, and (2.8)

θδε = α− π

2
. (2.9)

The absolute differential strain magnitude rδε 
shows that we can generalise the use of individual 
fibre distances d to the inter-fibre distance p in case of 
differential strain c.f. equation (2.2) & (2.8). Further-
more, the direction θδε of increased differential strain 
lags the bending axis by π/2 and is therefore oppo-
site to the bending direction, which is consistent with 
equation (2.2).

Since the strain vector 
−→
δε is opposite to to the bend-

ing vector (figure 2(b)), and we aim to measure flow 
speeds in the bending direction, we choose a pairing 
of sensor cores such that the projection of differential 

wavelength shift (
−→
δλ ∝ −

−→
δε) is in the bending direc-

tion. With respect to the sensor orientation as depicted 
in figure 2, the Cartesian projections of wavelength dif-
ference are given by

δλx = c1 − c2 = c4 − c3 = G ·∆τx, (2.10)

δλy = c3 − c2 = c4 − c1 = G ·∆τy, (2.11)

where cn denotes the generated Bragg wavelength shift 
at core number n. Alternative combinations of cores, 
such as along the diagonals of the lattice, also provide 
the required orthogonality. This diagonal combination 
requires four functional cores and is therefore less 
redundant.

The induced differential wavelength shift 
−→
δλ and 

deflection 
−→
∆τ  can conveniently be defined as vectors 

and are thus only a dimensionless linear geometrical 
factor apart (equation (2.12)).

G =
|
−→
δλ|
|−→∆τ |

=
3 · p · (h − z) · λB

h3
. (2.12)

Using practical values for p of tenths of millime-
tres, combined with sensor height h in the order of cen-
timetres, the value of G is typically in the order of 10−7.

2.4. Dynamic properties
The physical parameters of both the elastic support 
and sensor body can be adjusted to predict and 
obtain desirable dynamic and filter characteristics. 
We obtain the frequency dependent sensitivity of 
the sensor by adapting a model for CNs found in fish 
(van Netten 2006). The magnitude of the complex 
frequency response FR( f ) is defined as the frequency 
dependent ratio of sensor response (in this case sensor 
body motion) per unit fluid velocity. Its argument 
constitutes the frequency dependent phase lag. In this 
model, given the relative dimensions of the sensor 
body and fibre support, we neglect fluid forces acting 
on the support.

Only three independent physical parameters deter-
mine the frequency response: the transition frequency 
ft, which selectively shifts a constant shaped Bode plot 
along the frequency axis, a resonance number Nr, 
which determines the shape of the associated Bode 
plot, and the novel buoyancy factor b of the sensor 
body, which also affects the Bode plot shape. The fre-
quency response and its parameters are described by 
equations (2.13)–(2.16).

FR( f ) =
1

2πft
·

1 +
√

2
2 (1 + i)

( f
ft

) 1
2 + 1

3 i f
ft

Nr + i f
ft
−

√
2

2 (1 − i)
( f

ft

) 3
2 − 2

9 (b + 1
2 )
( f

ft

)2

 (2.13)

ft =
µ

2 · π · ρfluid · a2 (2.14)

Nr =
K · a · ρfluid

6 · π · µ2 (2.15)

b =
ρbody

ρfluid
. (2.16)

The sensor is a dampened resonator; its resonant 
character is parameterized by Nr and affected by 
the bending stiffness K, sensor body radius a, fluid 
viscosity μ, fluid density ρfluid, and body density ρbody .

The resonance frequency fr (equation (2.17)) 
indicates the frequency at which the maximum of 
the FR is located. The resonating behaviour is quanti-
fied through the quality (Q) factor (equation (2.18)), 
which only depends on Nr. Keeping the Q factor low 
causes the sensor low pass filter function (i.e. fre-
quency response) to remain as flat as possible, effec-
tively increasing its useable bandwidth.

fr
∼= ft ·

√
Nr ·

9

2
· 1

b + 1
2

 (2.17)

Q =
fr

∆f
∼=

√
2

3
·
(Nr

3

) 1
4
. (2.18)

The bandwidth itself is bounded by a cut-off fre-
quency fc, the frequency at which the response in the 
fall-off region matches the DC response and is given by

Bioinspir. Biomim. 13 (2018) 026013
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fc = ft · Nr ·
√

3

2(b + 1
2 )

. (2.19)

2.5. Design optimisation
Using the dynamic and mechanical properties, we 
can optimise some sensor parameters with respect to 
fluid sensing. With FR( f = 0), the response at low 
frequencies can be found. Together with the cut-off 
frequency this leads to a sensitivity-bandwidth (SB) 
product, which only depends on b:

SB = FR(0) · fc =
1

2π
·
√

3

2(b + 1
2 )

. (2.20)

The SB is clearly maximal when b  =  0, then 
SB =

√
3/(2π), which is an 73% increase compared 

to neutrally buoyant neuromasts as found in fish 
(van Netten and McHenry 2013). Using polyethylene 
spheres with an effective b of about 0.05 in water at 
room temperature, allows for an increase of SB of 
about 65% over neutrally buoyant sensors.

Given the geometric factor (equation (2.12)) and 
the frequency response (equation (2.17)) at low fre-
quencies, we can also optimise the generated differ-
ential wavelength shift per fluid velocity by varying the 
inter-fibre distance p.

|
−→
δλ|
V

=
24 · a · µ · p · (h − z) · λB[

Esr4
s + 4

(
Ec − Es

)(
r2

c p2 + r4
c

)] . (2.21)

In equation (2.21), it is reflected in the numerator 
that the wavelength shift per fluid velocity increases 
linearly with the core distance p. However, the optical 
fibres have to be compressed and stretched at effec-
tively larger distances, adding to the flexural and there-
fore bending stiffness which is reflected in the denomi-
nator with a factor of p2. As a consequence, p has an 
optimal value for maximising detected wavelength 
shift per fluid velocity at

popt =
1

rc
·

√
Es · r4

s

4(Ec − Es)
+ r4

c . (2.22)

With the chosen materials and related Young’s moduli, 
this optimal distance is smaller than the core diameter. 
Therefore the optimal design has the fibres as close as 
possible to each other. Fabrication constraints limited 
the practical separation of the fibres to a minimum of 
p  =  0.3 mm.

3. Methods

In the manufacturing process, four standard 
communication optical SMF-28 fibres (jackets 
removed, rc  =  62.5 μm, Ec  =  75 GPa) are suspended 
in a square column formation. This leaves room 
for the optical adhesive to flow around the fibres. 
A custom glue dispenser and UV-curing system is 
encapsulating the four fibres and is slowly moved 

along the fibre formation. This embeds the fibres in a 
matrix (Es  =  0.14 GPa) of UV-cured optical adhesive 
(NOA68, Norland Products Cranbury, NJ, USA). A 
cross section of the resulting fibre structure is shown 
in figure 2(c). The fibre structure is then glued into a 
mounting block using an epoxy adhesive, in which a 
small diameter hole acts as a fixed cantilever point 
for the sensor. The sensor with length h  =  64.8 mm 
is fitted with a polyethylene sphere a  =  4.00 mm, 
b  =  0.05.

Figure 2(c) shows a cross section of the tip of the 
support structure, which is the closest indication of 
the cross section at the FBG height z. Here, the aver-
age distance between the fibre cores is found to be 
p = 313.1 ± 5.4 μm. The optical fibres do not form 
a perfect square, therefore we can expect some vari-
ation of bending stiffness depending on the bend-
ing direction. With the average radius of the sup-
port rs = 277.4 ± 5.5 μm, and the centre of the 
inscribed FBG sections located at z  =  5 mm, we 
expect a geometrical factor (equation (2.12)) of 
G = 3.22 ± 0.05 · 10−7, which describes the relation 
between the generated differential wavelength shift 
(sensor signal) per deflection at height h. On the basis 
of the dynamic properties described in section 2.4, we 
expect the sensor to have a resonance frequency of 13.4 
Hz and a Q factor of 13.4.

First, we validated that the sensor response is lin-
ear in our operational range by mechanically deflect-
ing the sensor. This allows for a linear relation between 
sensor body motion and resulting optical signals via a 
geometric factor, and is a requirement for acquiring 
the frequency response FR using the current method. 
Using a linear stage, the sensor was deflected in steps 
of 0.5 mm while monitoring the sensor signal. Then, 
in order to infer its dynamic properties, i.e. the FR, the 
sensor motion and sensor signal were monitored in 
response to a hydrodynamic dipole stimulus (figure 3).

Sensor body motion was measured with a  calibrated 
Zeiss Axiotron microscope. A 2D position sensitive 
detector (On-Trak PSM 2-2) allowed for high-speed 
2D tracking of an attached reflectance marker within a 
range of 500 μm  ×  500 μm in the objective focal plane. 
Strain-induced FBG wavelength peak shift was meas-
ured with picometer resolution at 5 kHz using an opti-
cal interrogator (Micron Optics si225, Atlanta, USA). 
The difference in reflectance peaks of cores 1 and 2 and 
those of core 4 and 1 (figure 2(a)) are used as Carte-
sian x and y projections of measured wavelength shifts 
(equations (2.10) and (2.11)).

A hydrodynamic dipole source was produced using 
a Bruel & Kjaer 4810 mini-shaker driving a submerged 
sphere (� = 9.9 mm). This stimulus was levelled with 
the sensor height h. The water tank setup (figure 3) 
was placed on a vibration isolation table (Newport 
VW series) as to avoid mechanical noise. Sinusoidal 
stimuli were generated, and sensor body motion syn-
chronously acquired, using a CED power1401 data 
acquisition system. The mini-shaker was calibrated for 

Bioinspir. Biomim. 13 (2018) 026013
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frequencies ranging from 1 to 200 Hz, with a constant 
travel amplitude of about 58 μm. A model for viscous 
flow (van Netten 2006) was used for calculating the 
fluid flow velocity produced by the calibrated stimu-
lus. The stimulus sphere was positioned at a distance r, 
measured using a micrometer stage.

The sensor was pre-stimulated diagonally at a given 
stimulation frequency for at least 3 seconds before 
sampling, in order to avoid transients. For both sensor 
motion and sensor signal, we obtained the amplitude 
and phase lag by applying a flat-top window suitable for 
low amplitude and resolution data (Heinzel et al 2002), 
and calculating the discrete Fourier transform. From 
the resulting spectrum magnitude, we take the maxi-
mal value at the stimulation frequency as the response 
amplitude. The corresponding imaginary part yields 
the phase-lag at that frequency. In order to prevent 
spectral aliasing in Fourier analysis, 64 low pass filtered 

periods of sensor motion with 512 samples per period 
were sampled for a given stimulation frequency.

4. Results

The Cartesian (x, y) sensor signals for a sensor at rest 
showed normal distributed noise on the measured 
differential wavelengths with a standard deviation 
of 2.02 pm at 5 kHz sampling, which defines a lower 
bound for the dynamic range of the sensor.

4.1. Linearity
To test for linearity, the sensor has been deflected in 
steps of 0.5 mm up to 10 mm (black) and back to origin 
(cyan) for both positive and negative deflections, 
where each position was held for at least four seconds.

From figure 4, we infer that the sensor response 
is linear for deflections up to 5 mm as a conservative 

Figure 3. Schematic side view of the setup. The submerged stimulus sphere vibrates with a calibrated motion amplitude of about 
58 μm at a distance r to the spherical sensor body. The optical fibres (dashed grey lines) are individually connected to optical 
interrogator channels to measure wavelength peak shifts.

Figure 4. Averaged sensor output in response to deflection.

Bioinspir. Biomim. 13 (2018) 026013
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estimate (R2  >  0.999), and approximately linear up 
to 10 mm with some small deviations. On average, 
a deflection of 5 mm corresponds to a differential 
wavelength shift of 1.78 nm. The slope of the response 
matching this linear part yields a measured geomet-
ric factor (equation (2.12)) of 3.56 · 10−7 under static 
deflection conditions.

4.2. Dynamic response
To determine the frequency response and further 
verify the geometric factor at dynamic submillimetre 
deflections, the sensor was hydrodynamically 
stimulated at frequencies from 2 to 100 Hz. Figure 5 
shows the frequency response for the sensor body 
motion in the x and y directions.

Here, the x (black) and y (cyan) projections of 
measured sensor body motion (squares) and phase 
(triangles) are plotted for each stimulation frequency. 
Their respective fits result in the fitted param eters  
b  =  0.05, ft  =  0.021, Nr,x = 7.12 · 104 and 
Nr,y = 6.52 · 104.

The measured frequency response (figure 5) shows 
a slight difference in resonance peaks and phase lag for 
the x and y directions. From this measurement, we find 
that the sensor has a resonance frequency of 14.7 Hz in 

its x direction, with a Q factor of 15.3. In the y direction, 
we find a resonance frequency of 14.0 Hz and a slightly 
lower Q factor of 15.1. This slight difference is most 
visible near the phase flip and amplitude maxima and 
is reflected in their different fitted values for Nr. This 
difference can therefore be attributed to the mechani-
cal properties of the non-perfect square lattice inside 
the fibre support structure; a slight directional differ-
ence exists.

Figure 6 shows the wavelength shift signal and 
body motion over time of five trials of the frequency 
response measurement. As expected, the relative ori-
entation and magnitude of both types of data match 
up. From the ratio of sensor signal amplitude to sen-
sor motion amplitude, we obtain a measured geomet-
ric factor of 3.58 · 10−7 in the submillimetre domain 
under dynamic conditions.

Due to the small directional difference in bending 
stiffness and resulting frequency response, the x and 
y projections of motion, and therefore sensor signal, 
have a slight phase lag difference. This produces sensor 
motion in ellipses rather than straight lines at stimula-
tion close to either x or y resonance frequencies. In the 
next section we demonstrate a method to correct for 
this phenomenon.

Figure 5. Measured frequency response and model fit for both x and y projections as a result from diagonal stimulation.

Figure 6. Comparison between sensor body motion (top) and differential wavelength shift (bottom). For both types of data, the 
black ellipses are reconstructed from the flat-top windowed DFT amplitude and phase estimation on the raw (grey) data.

Bioinspir. Biomim. 13 (2018) 026013
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5. Discussion

The measured sensor behaviour has been shown 
to compare well with the modelled input-output 
and frequency characteristics. The sensor acts as a 
dampened resonator both driven and dampened 
by fluid forces. The results show that the measured 
frequency response (figure 5) is accurately described 
by the combined hydrodynamics and strain-
structure model. Both large, static, mechanical 
deflection (G = 3.56 · 10−7) and small, dynamic, 
hydrodynamical stimulation (G = 3.58 · 10−7) 
aligns with the modelled mechanical properties of the 
sensor based on the cross section from the sensor tip 
(G = 3.22 ± 0.05 · 10−7).

This model can therefore be used to relate sensor 
signal via sensor body motion to local fluid flow in two 
steps. First, the sensor signal can be translated to sen-
sor body motion with the geometric factor G. Then, by 
a deconvolution via the frequency response (equation 
(2.13)), which incorporates the fluid-dynamic char-
acteristics of the sensor, we can accurately obtain the 
local 2D flow velocity (see figure 7).

5.1. Sensitivity and dynamic range
The measurement of the frequency characteristics in 
figure 5 shows an expected peak, which indicates the 
resonance frequency, where the sensor is most sensitive. 
Higher frequencies will be filtered out, i.e. there’s a 
constant downward slope in the frequency response 
curve. At frequencies below resonance, the frequency 
response plateaus and will still pick up low frequency 
and DC flow (see equation (2.19) and table 1), although 

it is not specifically designed to do so.
The lowest detectable flow speeds of the artificial 

neuromasts affect the detection limits for tracking 
objects using artificial lateral lines (Boulogne et al 
2017). We can infer this threshold velocity, at which the 
expected sensor signal equals noise levels, by taking the 

ratio of the measured noise in 
−→
δλ to G times the fre-

quency response (table 1).
When down sampling the signal by averaging 

with a factor 50, the noise levels dropped from 2.02 
pm to 0.28 pm with a factor close to 

√
50, as would be 

expected from normally distributed noise. The sensor 
is shown to be linear up to deflections of about 5 mm 
(figure 4). Taking the corresponding 1.78 nm wave-
length shift and σnoise as the upper and lower bound-
aries respectively, this amounts to a linear Dynamic 
Range of 29 dB at 5 kHz sampling and 38 dB when 
down sampled to 100 Hz.

5.2. Two-dimensional fluid flow sensing
Two orthogonal projections of flow can be measured 
by the all-optical artificial neuromast using the 
information of at least three cores. This requires that 
four fibres are positioned in a square lattice embedded 
in a support structure. The sensor cross section as 
shown in figure 2(c) shows that the centres of the four 
fibres do not form a perfect square, so some directional 
variance in stiffness and therefore sensitivity exists. By 
employing a 2D method of sensing sensor body motion, 
we can measure, and correct for, this directional 
variance. In practice, by processing the sensor signals 
via a deconvolution along two orthogonal dimensions, 
we can translate sensor signal and body motion with 
their respective phase lag and resonance properties to a 
2D representation of local fluid flow.

Figure 7 shows the deconvolution process (for 
details, see Smith (1997)). Here, measured sensor sig-
nals are first band pass filtered in order to reduce high 

(a) (b) (c) (d)

Figure 7. Progression from raw sensor signals at 14.4 Hz stimulation to local velocity reconstruction. (a) The 2D representation of 
sensor signals shows an elliptical motion due to the phase difference in the x, y projection. (b) Section of x, y signal. (c) After band-
pass filtering the signal, applying the geometrical factor and deconvolving via the FR, the slight phase difference between x and y is 
reduced. (d) 2D projection of reconstructed velocity.

Table 1. Lowest detectable fluid velocities for the optical sensor. 
The lower frequency sensitivities are extrapolated from the fitted 
model and indicated with a *. Both x, y resonance frequencies are 
displayed to indicate the magnitude of difference between sensing 
low frequency flow and flow at sensor resonance.

Sampling 5 kHz 100 Hz

V (mm s−1) Vx Vy Vx Vy

0 Hz* 36 34 5.1 4.8

0.01 Hz* 22 21 3.2 3.0

0.1 Hz* 9.1 8.5 1.3 1.2

1 Hz* 1.7 1.6 0.23 0.22

10 Hz 0.11 0.098 0.016 0.014

14.0 Hzy 0.031 0.027 0.0043 0.0039

14.7 Hzx 0.028 0.030 0.0039 0.0043

50 Hz 0.42 0.44 0.059 0.062

Bioinspir. Biomim. 13 (2018) 026013
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and low frequency noise. In the frequency domain, the 
real sensor amplitudes are divided by the amplitudes of 
the FR. The FR phase is subtracted from the imaginary 
valued sensor phase information. Using an inverse Fou-
rier transform, the resulting amplitude and phase infor-
mation is then transformed back into the time domain. 
For longer or continuous sensor readings, taking a small 
buffer period into account, this procedure can be per-
formed real-time using sliding time windows.

In addition, we can express the uncertainty of 
the sensor readings both in Cartesian projections of 
measured fluid flow as well as a magnitude and direc-
tion representation. As is clear from figure 7(d), the 
reconstructed velocity contains some magnitude and 
direction variance. Ignoring velocity readings under 
0.05 mm s−1 and taking the ratio of Vx and Vy over 
time, the variation in the reconstructed direction of 
velocity oscillation amounts to a standard deviation of  
σ = 1.8°, with an oscillating flow amplitude of 
0.54 mm s−1. The sensor is therefore able to reliably 
determine fluid flow direction within a few degrees.

6. Conclusion

We have shown that the fibre structure mechanically 
acts in accordance with our combined hydrodynamics 
and strain-structure model. The predictable nature 
of dynamic behaviour allows for deconvolution of 
measured strain induced FBG signals via the frequency 
dependent velocity sensitivity which, in turn, allows 
for direct translation to fluid velocity. The dynamic 
characteristics are tuneable by varying the sensor 
dimensions and mechanical properties, allowing a 
tailored design for specific use cases.

The presented strain-structure model allows optimiz-
ing the sensor design for generating strain and thus sensor 
signal per sensor motion. The observed geometric fac-
tor relating sensor body motion to observed differ ential  
wavelength shift is in accordance with the modelled geo-
metric factor. It is consistent throughout the measure-
ments and allows individual sensors to be calibrated by 
using conventional displacement sensitive methods, such 
as mechanical deflection or visual monitoring.

A welcome enhancement from its 1D-sensitive 
biological counterpart and state-of-the-art artificial 
neuromasts is that by interrogating the sensor in two 
perpendicular axes, a single sensor will provide infor-
mation about both the magnitude and the angle of the 
local flow velocity. Although it is shown that station-
ary artificial lateral lines can reconstruct dipole sources 
and moving artificial lateral lines can detect obstacles 
without a second dimension, this extra information 
might be able to increase the ALL detection precision 
and effectiveness.
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