2 research outputs found

    Heat Transfer Analysis of Conventional Round Tube and Microchannel Condensers in Automotive Air Conditioning System

    Get PDF
    In this paper, an experimental analysis of conventional air cooled round tube and microchannel condensers in an automotive air conditioning cycle in term of heat transfer coefficient and energy is presented. The analysis was carried out in a test unit of automotive air conditioning system works with R134a. The conventional round tube plate fin condenser, and cycle were examined first. After that the conventional condenser is replaced by a parallel flow multi-louvered fin microchannel condenser with 0.1 mm hydraulic diameter, and the same experiments in same conditions have been re-implemented. The performance of two condenser and cycles were tested in terms of ambient temperature, which it was varied from 40oC to 65oC. Besides, the indoor temperature and load has been set to 23oC and 2200 W respectively. It was found that replacing the round tube conventional condenser with a microchannel is useful and can enhances the total cycle performance. Because, the microchannel condenser has 224 % and 77 % higher refrigerant side and air side heat transfer coefficient than the conventional. So that, the COP, in case of using the microchannel condenser, was found to be 20 % higher than the conventional. In addition, the microchannel condenser 50 % smaller volume than the conventional. Therefore, it provides more empty space in the car engine container to be occupied with other components or to be removed. Keywords: Automotive air conditioning, Condenser, Microchannel, Heat transfer, Energ

    Heat Transfer Analysis of Conventional Round Tube and Microchannel Condensers in Automotive Air Conditioning System

    No full text
    In this paper, an experimental analysis of conventional air-cooled and microchannel condensers in automotive vapor compression refrigeration cycle concerning heat transfer coefficient and energy using R134a as a refrigerant was presented. The performance of two condensers and cycles tested regarding ambient temperature which it was varied from 40oC to 65oC, while the indoor temperature and load have been set to be 23oC and 2200 W respectively. Results showed that the microchannel condenser has 224 % and 77 % higher refrigerant side and air side heat transfer coefficient respectively than the coefficients of the conventional condenser. Thus, the COP, in case of using the microchannel condenser, was found to be 20 % higher than that of the conventional cycle. Also, the microchannel condenser has a 50 % smaller volume than the conventional. Therefore, it provides more space in the car engine container occupied with other components
    corecore