15 research outputs found

    Potential determinants of salinity tolerance in rice (Oryza sativa L.) and modulation of tolerance by exogenous ascorbic acid application

    Get PDF
    Rice is a relatively salt-sensitive crop with the reproductive and seedling stages being the most sensitive. Two separate experiments were conducted to isolate potential determinants of salinity tolerance and to investigate the possibility of modulating salt tolerance by exogenous ascorbic acid (AsA) application. Rice plants were imposed to salinity (EC= 10.0 dS m-1) both at the seedling and reproductive phases of growth. Salinity at the seedling stage resulted a sharp decline in shoot and root growth related traits including leaf chlorophyll content, while hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels increased. Plants experienced with salinity at the reproductive phases of growth showed a significant reduction in yield attributing traits while the tissue levels of H2O2 increased. Exogenous AsA application reversed the negative impact of salt stress, modulating the root and shoots growth and yield related traits and lowering H2O2 and MDA levels. FL-478 was identified as the most tolerant genotype at the seedling stage, with Binadhan-10 being the most tolerant at the reproductive stage. Grain yield panicle-1 significantly and positively corrected with number of filled grains panicle-1, panicle length, plant height, and spikelet fertility, and negatively correlated with H2O2 levels. Stress tolerance indices clearly separated the tolerant and susceptible genotypes. A principal component analysis revealed that the first two components explained 87% of the total variation among the genotypes. Breeding efforts could therefore to undertake for developing salinity tolerance by manipulating endogenous AsA content in rice

    Differential Response of Sugar Beet to Long-Term Mild to Severe Salinity in a Soil-Pot Culture

    Get PDF
    Attempts to cultivate sugar beet (Beta vulgaris spp. vulgaris) in the sub-tropical saline soils are ongoing because of its excellent tolerance to salinity. However, the intrinsic adaptive physiology has not been discovered yet in the sub-tropical climatic conditions. In this study, we investigated morpho-physiological attributes, biochemical responses, and yield of sugar beet under a gradient of salinity in the soil-pot culture system to evaluate its adaptive mechanisms. Results exhibited that low and high salinity displayed a differential impact on growth, photosynthesis, and yield. Low to moderate salt stress (75 and 100 mM NaCl) showed no inhibition on growth and photosynthetic attributes. Accordingly, low salinity displayed simulative effect on chlorophyll and antioxidant enzymes activity which contributed to maintaining a balanced H2O2 accumulation and lipid peroxidation. Furthermore, relative water and proline content showed no alteration in low salinity. These factors contributed to improving the yield (tuber weight). On the contrary, 250 mM salinity showed a mostly inhibitory role on growth, photosynthesis, and yield. Collectively, our findings provide insights into the mild-moderate salt adaptation strategy in the soil culture test attributed to increased water content, elevation of photosynthetic pigment, better photosynthesis, and better management of oxidative stress. Therefore, cultivation of sugar beet in moderately saline-affected soils will ensure efficient utilization of lands

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    Convenient Way to Detect Ulcer in Wireless Capsule Endoscopy Through Fuzzy Logic Technique

    No full text
    The ulcer is one of the most common and dangerous among the effect of many deadly diseases in the Gastrointestinal tract. It is complicated to diagnose and detect the tiny intestine ulcers by applying other alternative methods of endoscopy. Wireless Capsule Endoscopy (WCE) technique is rapidly using more conveniently to visualize these ulcers. However, it is challenging and time-consuming for the clinicians to check the vast amount of images captured from the WCE. So, it has become the most crucial concern to provide an automated system for detecting the ulcer to help the clinicians. In this research paper, a unique automatic ulcer diagnosis model is introduced to detect ulcers from images that have been converted from the captured WCE video. In the proposed method, Some consecutive approaches, like pre-processing and fuzzy logic framework, have been applied for extracting the ulcer portion on L*a*b colour model. The proposed method has obtained a tremendous result of sensitivity 95%, accuracy 95.5%, specificity 97%, F1 score 96.48%, precision 98%, and negative predicted value 91% by utilizing the statistical feature and KNN classifier. Therefore, from the analysis of the analytical results and comparison studies, it is highly optimistic about having a positive impact on this research arena

    Mechanistic Insight of Allantoin in Protecting Tomato Plants Against Ultraviolet C Stress

    No full text
    Allantoin ((AT) a purine metabolite)-mediated ultraviolet C (UVC) stress mitigation has not been studied to date. Here, we reported the physicochemical mechanisms of UVC-induced stress in tomato (Solanum lycopersicum L.) plants, including an AT-directed mitigation strategy. UVC stress reduced plant growth and photosynthetic pigments. Heatmap and principal component analysis (PCA) revealed that these toxic impacts were triggered by the greater oxidative damage and disruption of osmolyte homeostasis. However, pre-treatment of AT noticeably ameliorated the stress-induced toxicity as evident by enhanced chlorophyll, soluble protein, and soluble carbohydrate contents in AT-pretreated UVC-stressed plants relative to only stressed plants leading to the improvement of the plant growth and biomass. Moreover, AT pre-treatment enhanced endogenous AT and allantoate content, phenylalanine ammonia-lyase, non-enzymatic antioxidants, and the enzymatic antioxidants leading to reduced oxidative stress markers compared with only stressed plants, indicating the protective effect of AT against oxidative damage. Moreover, PCA displayed that the protective roles of AT strongly associate with the improved antioxidants. On the other hand, post-treatment of AT showed less efficacy in UVC stress mitigation relative to pre-treatment of AT. Overall, this finding illustrated that AT pre-treatment could be an effective way to counteract the UVC stress in tomato, and perhaps in other crop plants

    Hydrogen peroxide priming alleviates chilling stress in rice (Oryza sativa L.) by enhancing oxidant scavenging capacity

    No full text
    Chilling is a substantial stressor for plants. In fact, some biochemical reactions involved in growth and development of plant are sensitive to temperature. In particular, chilling stress represents a severe issue for plant growth and productivity and strategies to alleviate the stress is an important goal for agriculturists. While, hydrogen peroxide (H2O2) acts as a signalling molecule and its role in preventing several abiotic stresses like heat, salinity, drought etc. is well understood. Thus, the present study tested the effects of H2O2 priming in mitigation of chilling stress at germination and seedling stage of rice. The rice seeds were treated with H2O2 (5, 10 and 15 mM H2O2) solution for 24 h and exposed to chilling stress either for 6 h in 24 h or 12 h in 24 h for 7 days. Results revealed that, chilling stress seriously impeded germination indices (germination percentage, germination rate index, coefficient of velocity of germination and mean germination time), morphological parameters (shoot length, root length and fresh weight), total chlorophyll content and antioxidant enzymes (catalase and ascorbate peroxidase) activity. On the other hand, priming with H2O2 (5mM, 10mM and 15mM) displayed protective effects on germination indices and growth parameters and conferred a significant tolerance against chilling stress. Priming with H2O2 also significantly protected chlorophyll from chilling-induced degradation. Our results provide a strong foundation that priming with H2O2 confers a positive physiological effect by enhancing antioxidant enzymes capability (increased catalase and ascorbate peroxidase activity) of chilling stressed rice plant. Among the concentrations, 10 mM H2O2 performed relatively better in chilling stress alleviation. Therefore, this technique can be used for improved rice seedling production in northern part of Bangladesh under low temperature condition. [Fundam Appl Agric 2019; 4(1.000): 713-722

    Prospects of Marine Sterols against Pathobiology of Alzheimer’s Disease: Pharmacological Insights and Technological Advances

    No full text
    Alzheimer’s disease (AD) is a degenerative brain disorder characterized by a progressive decline in memory and cognition, mostly affecting the elderly. Numerous functional bioactives have been reported in marine organisms, and anti-Alzheimer’s agents derived from marine resources have gained attention as a promising approach to treat AD pathogenesis. Marine sterols have been investigated for several health benefits, including anti-cancer, anti-obesity, anti-diabetes, anti-aging, and anti-Alzheimer’s activities, owing to their anti-inflammatory and antioxidant properties. Marine sterols interact with various proteins and enzymes participating via diverse cellular systems such as apoptosis, the antioxidant defense system, immune response, and cholesterol homeostasis. Here, we briefly overview the potential of marine sterols against the pathology of AD and provide an insight into their pharmacological mechanisms. We also highlight technological advances that may lead to the potential application of marine sterols in the prevention and therapy of AD

    A Systematic Review on Marine Algae-Derived Fucoxanthin: An Update of Pharmacological Insights

    No full text
    Fucoxanthin, belonging to the xanthophyll class of carotenoids, is a natural antioxidant pigment of marine algae, including brown macroalgae and diatoms. It represents 10% of the total carotenoids in nature. The plethora of scientific evidence supports the potential benefits of nutraceutical and pharmaceutical uses of fucoxanthin for boosting human health and disease management. Due to its unique chemical structure and action as a single compound with multi-targets of health effects, it has attracted mounting attention from the scientific community, resulting in an escalated number of scientific publications from January 2017 to February 2022. Fucoxanthin has remained the most popular option for anti-cancer and anti-tumor activity, followed by protection against inflammatory, oxidative stress-related, nervous system, obesity, hepatic, diabetic, kidney, cardiac, skin, respiratory and microbial diseases, in a variety of model systems. Despite much pharmacological evidence from in vitro and in vivo findings, fucoxanthin in clinical research is still not satisfactory, because only one clinical study on obesity management was reported in the last five years. Additionally, pharmacokinetics, safety, toxicity, functional stability, and clinical perspective of fucoxanthin are substantially addressed. Nevertheless, fucoxanthin and its derivatives are shown to be safe, non-toxic, and readily available upon administration. This review will provide pharmacological insights into fucoxanthin, underlying the diverse molecular mechanisms of health benefits. However, it requires more activity-oriented translational research in humans before it can be used as a multi-target drug

    Effectiveness of calcium channel blockade for organophosphorus and carbamate pesticide poisoning – study protocol for an open label, pragmatic, 3-arm RCT repurposing two widely available medicines

    No full text
    AbstractPesticide self-poisoning is one of the three most important global means of suicide, killing an estimated 110–168,000 people each year, mostly in poor rural Asian communities. Organophosphorus (OP) and carbamate anticholinesterase insecticides are responsible for about two-thirds of these deaths. Calcium channel blocking medicines (CCB) may reduce the effect of pesticides and prevent deaths. Two preclinical rodents’ studies and eight clinical studies utilising nimodipine and magnesium sulphate (MgSO4), respectively, showed mixed results. We have established a multi-centre randomised controlled trial (RCT) of patients with OP or carbamate self-poisoning admitted to at least six major hospitals in Bangladesh. The study aims to recruit maximum 3,243 patients over four years. One-third of the patients selected at random will receive standard treatment, while one-third will be treated with additional nimodipine and one-third with additional MgSO4. The additional treatments will be given for 48 h. We will check mortality (currently an estimated 11% die with standard treatment) and need for intensive care for mechanical ventilation across the three groups. This could lead to development of the first novel treatment for anticholinesterase poisoning in 50 years and its introduction into routine hospital practice worldwide

    DataSheet_1_Exogenous nitric oxide promotes salinity tolerance in plants: A meta-analysis.docx

    No full text
    Nitric oxide (NO) has received much attention since it can boost plant defense mechanisms, and plenty of studies have shown that exogenous NO improves salinity tolerance in plants. However, because of the wide range of experimental settings, it is difficult to assess the administration of optimal dosages, frequency, timing, and method of application and the overall favorable effects of NO on growth and yield improvements. Therefore, we conducted a meta-analysis to reveal the exact physiological and biochemical mechanisms and to understand the influence of plant-related or method-related factors on NO-mediated salt tolerance. Exogenous application of NO significantly influenced biomass accumulation, growth, and yield irrespective of salinity stress. According to this analysis, seed priming and foliar pre-treatment were the most effective methods of NO application to plants. Moreover, one-time and regular intervals of NO treatment were more beneficial for plant growth. The optimum concentration of NO ranges from 0.1 to 0.2 mM, and it alleviates salinity stress up to 150 mM NaCl. Furthermore, the beneficial effect of NO treatment was more pronounced as salinity stress was prolonged (>21 days). This meta-analysis showed that NO supplementation was significantly applicable at germination and seedling stages. Interestingly, exogenous NO treatment boosted plant growth most efficiently in dicots. This meta-analysis showed that exogenous NO alleviates salt-induced oxidative damage and improves plant growth and yield potential by regulating osmotic balance, mineral homeostasis, photosynthetic machinery, the metabolism of reactive oxygen species, and the antioxidant defense mechanism. Our analysis pointed out several research gaps, such as lipid metabolism regulation, reproductive stage performance, C4 plant responses, field-level yield impact, and economic profitability of farmers in response to exogenous NO, which need to be evaluated in the subsequent investigation.</p
    corecore