17 research outputs found

    Dermatological Emergencies in Family Medicine: Recognition, Management, and Referral Considerations

    Get PDF
    Numerous people with skin disorders who have real dermatologic crises show up at the emergency room. Family doctors need to be able to identify potentially fatal dermatological disorders quickly since they could be the first to encounter patients with these illnesses. The purpose of this review is to provide guidance for early recognition, help identify distinct symptoms, and enable early diagnosis of emerging dermatological conditions. Necrotizing fasciitis, Stevens-Johnson syndrome, toxic epidermal necrolysis, Rocky Mountain spotted fever, and other possible emergencies that might manifest as dermatological symptoms are examples of these conditions. In this article we will be discussing the dermatological emergencies present at primary care settings and encountered by family physician, recognition and management of those emergencies, referral considerations, role of family medicine in dermatological emergencies and other topics

    HIV-Care Outcome in Saudi Arabia; a Longitudinal Cohort

    Get PDF
    Background: Clinical characteristics of HIV-1 infection in people inhabiting Western, Sub-Saharan African, and South-East Asian countries are well recognized. However, very little information is available with regard to HIV-1 infection and treatment outcome in MENA countries including the Gulf Cooperation Council (GCC) states. Methods: Clinical, demographic and epidemiologic characteristics of 602 HIV-1 infected patients followed in the adult Infectious Diseases Clinic of King Faisal Specialist Hospital and Research Centre, in Riyadh, Kingdom of Saudi Arabia a tertiary referral center were longitudinally collected from 1989 to 2010. Results: Of the 602 HIV-1 infected patients in this observation period, 70% were male. The major mode of HIV-1 transmission was heterosexual contact (55%). At diagnosis, opportunistic infections were found in 49% of patients, most commonly being pneumocysitis. AIDS associated neoplasia was also noted in 6% of patients. A hundred and forty-seven patients (24%) died from the cohort by the end of the observation period. The mortality rate peaked in 1992 at 90 deaths per 1000 person-year, whereas the mortality rate gradually decreased to <1% from 1993-2010. In 2010, 71% of the patients were receiving highly active retroviral therapy. Conclusions: These data describe the clinical characteristic of HIV-1-infected patients at a major tertiary referral hospital in KSA over a 20-year period. Initiation of antiretroviral therapy resulted in a significant reduction in both morbidity and mortality. Future studies are needed in the design and implementation of targeted treatment and prevention strategies for HIV-1 infection in KSA

    The Effect of LED Light Spectra on the Growth, Yield and Nutritional Value of Red and Green Lettuce (Lactuca sativa)

    No full text
    Controlled Environment Agriculture (CEA) is a method of increasing crop productivity per unit area of cultivated land by extending crop production into the vertical dimension and enabling year-round production. Light emitting diodes (LED) are frequently used as the source of light energy in CEA systems and light is commonly the limiting factor for production under CEA conditions. In the current study, the impact of different spectra was compared with the use of white LED light. The various spectra were white; white supplemented with ultraviolet b for a week before harvest; three combinations of red/blue lights (red 660 nm with blue 450 nm at 1:1 ratio; red 660 nm with blue 435 nm 1:1 ratio; red 660 nm with blue at mix of 450 nm and 435 nm 1:1 ratio); and red/blue supplemented with green and far red (B/R/G/FR, ratio: 1:1:0.07:0.64). The growth, yield, physiological and chemical profiles of two varieties of lettuce, Carmoli (red) and Locarno (green), responded differently to the various light treatments. However, white (control) appeared to perform the best overall. The B/R/G/FR promoted the growth and yield parameters in both varieties of lettuce but also increased the level of stem elongation (bolting), which impacted the quality of grown plants. There was no clear relationship between the various physiological parameters measured and final marketable yield in either variety. Various chemical traits, including vitamin C content, total phenol content, soluble sugar and total soluble solid contents responded differently to the light treatments, where each targeted chemical was promoted by a specific light spectrum. This highlights the importance of designing the light spectra in accordance with the intended outcomes. The current study has value in the field of commercial vertical farming of lettuce under CEA conditions

    Efficacy of Herbicides in Controlling Wild Onion (Asphodelus tenuifolius L.) in Cumin Grown under Arid Climatic Conditions

    No full text
    A field experiment was conducted to investigate the effectiveness of different herbicides for controlling wild onion (Asphodelus tenuifolius) in cumin (Cuminum cyminum L.) during the rabi seasons (2018–2019 and 2019–2020) at Agricultural Research Station, Agriculture University, Jodhpur, Rajasthan. The experiment comprised eight herbicidal weed management treatments for wild onion applied to cumin in a three-replication randomized block design. Among the herbicidal weed management treatments, early post-emergence (8 DAS) application of oxyfluorfen 200 g/ha resulted in the lowest weed density and dry matter of Asphodilus tenuifolius, with maximum weed (Asphodilus tenuifolius) control efficiency at 40 days after sowing (DAS) during both experimental years. Likewise, the highest total efficiency of weed control was recorded with the application of oxyfluorfen 200 g/ha at 8 DAS. Oxyflourfen 200 g/ha used early post emergence (8 DAS) reduced the weed index more effectively than the other herbicides. It also recorded the highest number of branches/plant, plant height, umbels/plant, umbellates/umbel, seeds/umbellates, and seed yield. However, application of oxyflourfen @ 200 g/ha 8 DAS–early POE and pendimethalin 38.7 CS 500 g/ha + oxyfluorfen @ 150 g/ha 8 DAS–early POE were statistically similar in terms of plant growth, yield, and yield attributes. The net returns (366.49 USD/ha in 2018–2019 and 175.72 USD/ha in 2019–2020) and B:C ratio (1.70 and 1.33 in 2018–2019 and 2019–2020, respectively) were also superior, with oxyfluorfen 200 g/ha applied early post emergence

    Tillage, Water and Nitrogen Management Strategies Influence the Water Footprint, Nutrient Use Efficiency, Productivity and Profitability of Rice in Typic Ustochrept Soil

    No full text
    The current study was conducted to assess how optimal tillage water and nitrogen management system are adopted to reduce various field inputs, to improve water footprint (WF), nutrient use efficiency (NUE), rice productivity and profitability. The W1 (CS to a depth of 5 cm) achieved significantly higher total water footprint (TWFP) compared to all other irrigation strategies. When N1 (control) and N2 (80 kg N ha−1) was used, the highest TWFP was observed. The rice transplanted on wide raised beds (WBed-TPR) (0.71 kg m−3) yielded the greatest water productivity (WPIRRI), followed by reduced tillage transplanted rice (RT-TPR) and conventional tillage puddled transplanted rice (CT-TPR). The physiological NUE values ranged from 33.3 to 50.6 kg grain/kg N absorption, the values decreasing as the N doses rose. According to the findings, WBed-TPR and RT-TPR plots similarly drank more moisture from the deeper profile layer than CT-TPR practice. In plots of CT-TPR and WBed-TPR, the yield contributing characteristics of rice all increased, while grain yield increased by 16.8% and 10.6% over NBed-TPR technique, respectively. Finally, CT-TPR reported with maximum cultivation costs, followed by NBed-TPR and the lowest in RT-TPR plots, although WBed-TPR had the highest net profit, B: C ratio

    Inducing Drought Tolerance in Wheat through Exopolysaccharide-Producing Rhizobacteria

    No full text
    Wheat is the main staple food in the world, so it is the backbone of food security. Drought not only affects growth and development but also ultimately has a severe impact on the overall productivity of crop plants. Some bacteria are capable of producing exopolysaccharides (EPS) as a survival mechanism, along with other metabolites, which help them survive in stressful conditions. The present study was conducted with the aim of inducing drought stress tolerance in wheat through EPS-producing plant growth-promoting rhizobacteria (PGPR). In this regard, a series of laboratory bioassays were conducted with the aim to isolating, characterizing, and screening the EPS-producing PGPR capable of improving wheat growth under limited water conditions. Thirty rhizobacterial strains (LEW1–LEW30) were isolated from the rhizosphere of wheat. Ten isolates with EPS-producing ability were quantitatively tested for EPS production and IAA production ability. Four of the most efficient EPS-producing strains (LEW3, LEW9, LEW16, and LEW28) were evaluated for their drought tolerance ability along with quantitative production of EPS and IAA under polyethylene glycol (PEG-6000)-induced drought stress. The jar experiment was conducted under gnotobiotic conditions to examine the drought-tolerant wheat genotypes, and two wheat varieties (Johar-16, and Gold-16) were selected for further experiments. The selected varieties were inoculated with EPS-producing rhizobacterial strains and grown under control conditions at different stress levels (0, 2, 4, and 6% PEG-6000). The strain LEW16 showed better results for improving root morphology and seedling growth in both varieties. The maximum increase in germination, growth parameters, percentage, root diameter, root surface area, and root colonization was recorded in Johar-16 by inoculating LEW16 at 6% PEG-6000. Plant growth-promoting traits were tested on the top-performing strains (LEW3, LEW9, and LEW16). Through 16S rRNA sequencing, these strains were identified as Chryseobacterium sp. (LEW3), Acinetobacter sp. (LEW9), and Klebsiella sp. (LEW16), and they showed positive results for phosphorous and zinc solubilization as well as hydrogen cyanide (HCN) production. The partial sequencing results were submitted to the National Center for Biotechnology Information (NCBI) under the accession numbers MW829776, MW829777, and MW829778. These strains are recommended for their evaluation as potential bioinoculants for inducing drought stress tolerance in wheat

    Inducing Drought Tolerance in Wheat through Exopolysaccharide-Producing Rhizobacteria

    No full text
    Wheat is the main staple food in the world, so it is the backbone of food security. Drought not only affects growth and development but also ultimately has a severe impact on the overall productivity of crop plants. Some bacteria are capable of producing exopolysaccharides (EPS) as a survival mechanism, along with other metabolites, which help them survive in stressful conditions. The present study was conducted with the aim of inducing drought stress tolerance in wheat through EPS-producing plant growth-promoting rhizobacteria (PGPR). In this regard, a series of laboratory bioassays were conducted with the aim to isolating, characterizing, and screening the EPS-producing PGPR capable of improving wheat growth under limited water conditions. Thirty rhizobacterial strains (LEW1&ndash;LEW30) were isolated from the rhizosphere of wheat. Ten isolates with EPS-producing ability were quantitatively tested for EPS production and IAA production ability. Four of the most efficient EPS-producing strains (LEW3, LEW9, LEW16, and LEW28) were evaluated for their drought tolerance ability along with quantitative production of EPS and IAA under polyethylene glycol (PEG-6000)-induced drought stress. The jar experiment was conducted under gnotobiotic conditions to examine the drought-tolerant wheat genotypes, and two wheat varieties (Johar-16, and Gold-16) were selected for further experiments. The selected varieties were inoculated with EPS-producing rhizobacterial strains and grown under control conditions at different stress levels (0, 2, 4, and 6% PEG-6000). The strain LEW16 showed better results for improving root morphology and seedling growth in both varieties. The maximum increase in germination, growth parameters, percentage, root diameter, root surface area, and root colonization was recorded in Johar-16 by inoculating LEW16 at 6% PEG-6000. Plant growth-promoting traits were tested on the top-performing strains (LEW3, LEW9, and LEW16). Through 16S rRNA sequencing, these strains were identified as Chryseobacterium sp. (LEW3), Acinetobacter sp. (LEW9), and Klebsiella sp. (LEW16), and they showed positive results for phosphorous and zinc solubilization as well as hydrogen cyanide (HCN) production. The partial sequencing results were submitted to the National Center for Biotechnology Information (NCBI) under the accession numbers MW829776, MW829777, and MW829778. These strains are recommended for their evaluation as potential bioinoculants for inducing drought stress tolerance in wheat
    corecore