3 research outputs found

    Design of FPGA- Based SPWM Single Phase Full-Bridge Inverter

    Get PDF
    Nowadays power inverters serve as an important emergency power supply system in events of main power supply failure. The AC output voltage of a power electronic inverter is usually non-sinusoidal and hence has a high harmonic content. Sinusoidal Pulse Width Modulation (SPWM) scheme is normally used to convert the DC power supply into AC power supply by comparing the reference voltage waveform with the triangular waveform known as carrier. SPWM provides a way to reduce the total harmonic distortion of load current. The objective of this paper is to demonstrate a SPWM switching scheme by using Altera DE2-70 board. In this SPWM technique, a sinusoidal reference voltage waveform is compared with the triangular carrier voltage to generate the on and off switching states. This switching scheme will trigger the gate of the power switch. In this paper, the SPWM switching strategies implemented using Altera DE2-70 (Cyclone II EP2C35F672C6) with 16 bit serial configuration devices. The switching between reference and carrier waveforms of SPWM is obtained by using Matlab software. Simulation on the design waveform is conducted using Quartus II software tools provided by Altera. The output frequency of SPWM is 50 Hz and the design is limited to two values of modulation indices which are 0.5 and 0.75

    Mathematical Derivation of Switching Angles of Multilevel Voltage Source Inverter based on Alternative Phase Opposition Disposition (APOD)

    Get PDF
    Modular structured multilevel inverter is very useful for electrical application especially in high voltage and high power applications. The main function of this multilevel inverter is to produce multilevel AC output voltage from several separate DC sources. This project is to derive a newmathematical formulation of multilevel voltage source inverter switching instants. The proposed method for this project is based on the sinusoidal natural sampling PWM (SPWM) by comparing several modified modulation signal with a triangular carrier signal. This resulting intersection points between this modulation and carrier signal become the switching instants of the PWM pulses. Derivation also based on Alternative Phase opposition disposition (APOD). A cascaded multilevel inverter is selected as a topology for this project due to major advantages compare with other topology. The derived formula is analyzed by using MATLAB simulation software. It is found that the results that use the derived formula are almost identical to simulation result

    Mathematical Derivation of Switching Angles of Multilevel Voltage Source Inverter based on Alternative Phase Opposition Disposition (APOD)

    No full text
    Modular structured multilevel inverter is very useful for electrical application especially in high voltage and high power applications. The main function of this multilevel inverter is to produce multilevel AC output voltage from several separate DC sources. This project is to derive a newmathematical formulation of multilevel voltage source inverter switching instants. The proposed method for this project is based on the sinusoidal natural sampling PWM (SPWM) by comparing several modified modulation signal with a triangular carrier signal. This resulting intersection points between this modulation and carrier signal become the switching instants of the PWM pulses. Derivation also based on Alternative Phase opposition disposition (APOD). A cascaded multilevel inverter is selected as a topology for this project due to major advantages compare with other topology. The derived formula is analyzed by using MATLAB simulation software. It is found that the results that use the derived formula are almost identical to simulation result
    corecore