1,366 research outputs found

    Adiabatic dynamics of periodic waves in Bose-Einstein condensate with time dependent atomic scattering length

    Full text link
    Evolution of periodic matter waves in one-dimensional Bose-Einstein condensates with time dependent scattering length is described. It is shown that variation of the effective nonlinearity is a powerful tool for controlled generation of bright and dark solitons starting with periodic waves.Comment: 4 pages, 1 figur

    Transmission of matter wave solitons through nonlinear traps and barriers

    Full text link
    The transmissions of matter wave solitons through linear and nonlinear inhomogeneities induced by the spatial variations of the trap and the scattering length in Bose-Einstein condensates are investigated. New phenomena, such as the enhanced transmission of a soliton through a linear trap by a modulation of the scattering length, are exhibited. The theory is based on the perturbed Inverse Scattering Transform for solitons, and we show that radiation effects are important. Numerical simulations of the Gross-Pitaevskii equation confirm the theoretical predictions.Comment: 6 pages, 4 figure

    Scarring in a driven system with wave chaos

    Full text link
    We consider acoustic wave propagation in a model of a deep ocean acoustic waveguide with a periodic range-dependence. Formally, the wave field is described by the Schrodinger equation with a time-dependent Hamiltonian. Using methods borrowed from the quantum chaos theory it is shown that in the driven system under consideration there exists a "scarring" effect similar to that observed in autonomous quantum systems.Comment: 5 pages, 7 figure

    Bright solitons in Bose-Einstein condensates with field-induced dipole moments

    Full text link
    We introduce an effectively one-dimensional (1D) model of a bosonic gas of particles carrying collinear dipole moments which are induced by an external polarizing field with the strength periodically modulated along the coordinate, which gives rise to an effective nonlocal nonlinear lattice in the condensate. The existence, shape and stability of bright solitons, appearing in this model, are investigated by means of the variational approximation and numerical methods. The mobility of solitons and interactions between them are studied too.Comment: Journal of Physics B, in press. 20 pages, 9 figures (21 frames
    corecore