9 research outputs found

    Evaluation of Surface Roughness by Image Processing of a Shot-Peened, TIG-Welded Aluminum 6061-T6 Alloy: An Experimental Case Study

    No full text
    Visual inspection through image processing of welding and shot-peened surfaces is necessary to overcome equipment limitations, avoid measurement errors, and accelerate processing to gain certain surface properties such as surface roughness. Therefore, it is important to design an algorithm to quantify surface properties, which enables us to overcome the aforementioned limitations. In this study, a proposed systematic algorithm is utilized to generate and compare the surface roughness of Tungsten Inert Gas (TIG) welded aluminum 6061-T6 alloy treated by two levels of shot-peening, high-intensity and low-intensity. This project is industrial in nature, and the proposed solution was originally requested by local industry to overcome equipment capabilities and limitations. In particular, surface roughness measurements are usually only possible on flat surfaces but not on other areas treated by shot-peening after welding, as in the heat-affected zone and weld beads. Therefore, those critical areas are outside of the measurement limitations. Using the proposed technique, the surface roughness measurements were possible to obtain for weld beads, high-intensity and low-intensity shot-peened surfaces. In addition, a 3D surface topography was generated and dimple size distributions were calculated for the three tested scenarios: control sample (TIG-welded only), high-intensity shot-peened, and low-intensity shot-peened TIG-welded Al6065-T6 samples. Finally, cross-sectional hardness profiles were measured for the three scenarios; in all scenarios, lower hardness measurements were obtained compared to the base metal alloy in the heat-affected zone and in the weld beads even after shot-peening treatments

    Manufacturing of Mg-Ti Couples at Different Heat Treatment Temperatures and Their Corrosion Behavior in Chloride Solutions

    No full text
    In this study, rods of magnesium alloy and titanium alloy were cut to have similar height of about 5mm and size of 10 mm × 10 mm to fabricate three Mg-Ti couples. The Mg-Ti couple was heat treated at 540 °C, 570 °C, and 600 °C. The corrosion of these couples have been investigated and compared with AZ31 alloy. Potentiodynamic polarization and electrochemical impedance spectroscopy measurements were employed to study the corrosion behavior after 1.0 h and 48 h exposure to 3.5% NaCl solutions. The morphology of surfaces was examined by scanning electron microscopy (SEM) and the profile analysis was collected using an energy dispersive X-ray (EDX) analyzer after 5 days immersion in the chloride solutions. It is found that coupling Mg with Ti reduces the corrosion of AZ31 alloy, which further decreased with the increase of the temperature of treatment. Prolonging the time of exposure from 1.0 h to 48 h remarkably decreased the corrosion of the couples as well

    Optimization of Pulsed Laser Ablation and Radio-Frequency Sputtering Tandem System for Synthesis of 2D/3D Al<sub>2</sub>O<sub>3</sub>-ZnO Nanostructures: A Hybrid Approach to Synthesis of Nanostructures for Gas Sensing Applications

    No full text
    In this paper, a unique hybrid approach to design and synthesize 2D/3D Al2O3-ZnO nanostructures by simultaneous deposition is presented. Pulsed laser deposition (PLD) and RF magnetron sputtering (RFMS) methods are redeveloped into a single tandem system to create a mixed-species plasma to grow ZnO nanostructures for gas sensing applications. In this set-up, the parameters of PLD have been optimized and explored with RFMS parameters to design 2D/3D Al2O3-ZnO nanostructures, including nanoneedles/nanospikes, nanowalls, and nanorods, among others. The RF power of magnetron system with Al2O3 target is explored from 10 to 50 W, while the ZnO-loaded PLD’s laser fluence and background gases are optimized to simultaneously grow ZnO and Al2O3-ZnO nanostructures. The nanostructures are either grown via 2-step template approach, or by direct growth on Si (111) and MgO substrates. In this approach, a thin ZnO template/film was initially grown on the substrate by PLD at ~300 °C under ~10 milliTorr (1.3 Pa) O2 background pressure, followed by growth of either ZnO or Al2O3-ZnO, using PLD and RFMS simultaneously under 0.1–0.5 Torr (13–67 Pa), and Ar or Ar/O2 background in the substrate temperate range of 550–700 °C. Growth mechanisms are then proposed to explain the formation of Al2O3-ZnO nanostructures. The optimized parameters from PLD-RFMS are then used to grow nanostructures on Au-patterned Al2O3-based gas sensor to test its response to CO gas from 200 to 400 °C, and a good response is observed at ~350 °C. The grown ZnO and Al2O3-ZnO nanostructures are quite exceptional and remarkable and have potential applications in optoelectronics, such in bio/gas sensors

    Lithium-Based Upconversion Nanoparticles for High Performance Perovskite Solar Cells

    No full text
    In this work, we report an easy, efficient method to synthesize high quality lithium-based upconversion nanoparticles (UCNPs) which combine two promising materials (UCNPs and lithium ions) known to enhance the photovoltaic performance of perovskite solar cells (PSCs). Incorporating the synthesized YLiF4:Yb,Er nanoparticles into the mesoporous layer of the PSCs cells, at a certain doping level, demonstrated a higher power conversion efficiency (PCE) of 19%, additional photocurrent, and a better fill factor (FF) of 82% in comparison to undoped PSCs (PCE = ~16.5%; FF = 71%). The reported results open a new avenue toward efficient PSCs for renewable energy applications
    corecore