3 research outputs found

    Machinability study on milling kenaf fiber reinforced plastic composite materials using the design of experiments

    Get PDF
    The surface roughness (Ra) and delamination factor (Fd) of a milled kenaf reinforced plastic composite materials are depending on the milling parameters (spindle speed, feed rate and depth of cut). Therefore, a study was carried out to investigate the relationship between the milling parameters and their effects on a kenaf reinforced plastic composite materials. The composite panels were fabricated using vacuum assisted resin transfer moulding (VARTM) method. A full factorial design of experiments was use as an initial step to screen the significance of the parameters on the defects using Analysis of Variance (ANOVA). If the curvature of the collected data shows significant, Response Surface Methodology (RSM) is then applied for obtaining a quadratic modelling equation that has more reliable in expressing the optimization. Thus, the objective of this research is obtaining an optimum setting of milling parameters and modelling equations to minimize the surface roughness (Ra) and delamination factor (Fd) of milled kenaf reinforced plastic composite materials. The spindle speed and feed rate contributed the most in affecting the surface roughness and the delamination factor of the kenaf composite materials.

    Prediction of maximum spreading time of water droplet during impact onto hot surface beyond the Leidenfrost temperature

    Get PDF
    When a water droplet impacts on a heated surface in the film boiling regime, it will spread, recede, and finally bounce off from the heated surface. These unique liquid-solid interactions only occur at high surface temperatures. Our main objective in this research is to measure the maximum spreading and residence time of the droplet and the findings were compared to theory. We focused our study in the film boiling regime. Brass material was selected as the test surface and was polished until it became a mirror polished surface. The temperature range for this experimental work was between 100 ◦C up to 420 ◦C. Degassed and distilled water was used as the test liquid. The high speed video camera recorded the images at the rate of 10,000 frames per second (fps). As a result, it was found that the experimental value of maximum spreading and esidence time agreed closely with the theoretical calculation. A new empirical formula that can be used to predict the maximum spreading time in the film boiling regime is also proposed
    corecore