2 research outputs found

    Synergistic effect of oil palm based pozzolanic materials/oil palm waste on polyester hybrid composite

    Get PDF
    This research work aims to investigate the synergistic effect of pozzolanic materials such as oil palm ash (OPA) and oil palm empty fruit bunch (OPEFB) on the developed hybrid polymer composites. The OPEFB and OPA fillers of different particle sizes (250, 150, and 75 µm) were mixed at OPEFB:OPA ratios of (0:100; 20:80; 40:60; 60:40; 80:20 and 100:0) and incorporated into an unsaturated polyester resin. Furthermore, both mechanical and morphological properties of the composites were analyzed and it was found that tensile, flexural, and impact properties were significantly improved at OPEFB:OPA of 75 µm particle size hybridization of the polymer. The increase of OPEFB to OPA filler ratio up to 80:20 significantly improved the tensile properties of the composites while 40:60 ratio of 75 µm gave the optimum filler ratio to obtain the highest flexural and impact properties of the composites among all studied samples. Scanning electron micrograph images showed strong particle dispersion of the embedded fillers with resin which explained the excellent mechanical strength enhancement of the composite

    Pulp and Paper Potentials of Alkaline Peroxide Pre-Treated of Oil Palm Waste and Industrial Application

    Get PDF
    This chapter explores the potentials of the alkaline peroxide pre-treated oil palm vascular bundle (oil palm waste) in the industrial production of pulp, paper and other cellulosic products like microcrystalline cellulose. Management of this escalating waste is a herculean task and creates environmental hazards hence urgent action is needed to create value out of these waste biomass. The pulp and paper industry being a large consumer of lignocellulose materials preferred the use of coniferous and deciduous trees for pulp production and papermaking because their cellulose fibres in the pulp make durable paper. In addition to this, the global population explosion and the economic development has resulted in the significant increase in demand for paper. With improvements in pulp processing technology through the use of environmental benign technology like alkaline peroxide pre-treatment it has been considered as suitable for paper pulp and other cellulose based products such as microcrystalline cellulose. Characterization of the alkaline peroxide pre-treated oil palm vascular bundles using the scanning electron microscope (SEM), Fourier transmission infra-red (FTIR) spectroscopy and X-Ray Diffraction (XRD) analyses confirm the micro-sized cellulose fibres. Use of these lignocellulosic materials can reduce the burden on the forest while supporting the natural biodiversity
    corecore