12 research outputs found

    Resting-state fMRI: comparing default mode network connectivity between normal and low auditory working memory groups

    Get PDF
    The relationship between resting effective connectivity (EC) among default mode network (DMN) regions and auditory working memory (AWM) performance is still poorly understood. In this work, resting-state functional magnetic resonance imaging (rsfMRI) was used to determine the optimum connectivity model between posterior cingulate cortex (PCC) and medial prefrontal cortex (mPFC) in 40 healthy male volunteers. in low and normal working memory groups of subjects. Correlation between EC with AWM performance and AWM-capacity was also studied. The participants were divided into two groups which are normal and low AWM-capacity groups based on Malay Version Auditory Verbal Learning Test. The AWM performance was assessed using a word-based backward recall task. Both assessments were conducted outside the MRI scanner. The participants were scanned using a 3-T MRI system and the data were analyzed using statistical parametric mapping (SPM12) and spectral Dynamic Causal Modelling (spDCM). Results revealed that PCC and mPFC were significantly interconnected in both groups. Group analyses showed that the connection between PCC and mPFC exhibits an anti-correlated network. The results also indicated that the AWM performance and AWM-capacity were not associated with EC. These findings suggest that EC at rest between the two regions may not significantly influence cognitive abilities important for this AWM task

    Alteration in the functional organization of the default mode network following closed non-severe traumatic brain injury

    Get PDF
    The debilitating effect of traumatic brain injury (TBI) extends years after the initial injury and hampers the recovery process and quality of life. In this study, we explore the functional reorganization of the default mode network (DMN) of those affected with non-severe TBI. Traumatic brain injury (TBI) is a wide-spectrum disease that has heterogeneous effects on its victims and impacts everyday functioning. The functional disruption of the default mode network (DMN) after TBI has been established, but its link to causal effective connectivity remains to be explored. This study investigated the differences in the DMN between healthy participants and mild and moderate TBI, in terms of functional and effective connectivity using resting-state functional magnetic resonance imaging (fMRI). Nineteen non-severe TBI (mean age 30.84 ยฑ 14.56) and twenty-two healthy (HC; mean age 27.23 ยฑ 6.32) participants were recruited for this study. Resting-state fMRI data were obtained at the subacute phase (mean days 40.63 ยฑ 10.14) and analyzed for functional activation and connectivity, independent component analysis, and effective connectivity within and between the DMN. Neuropsychological tests were also performed to assess the cognitive and memory domains. Compared to the HC, the TBI group exhibited lower activation in the thalamus, as well as significant functional hypoconnectivity between DMN and LN. Within the DMN nodes, decreased activations were detected in the left inferior parietal lobule, precuneus, and right superior frontal gyrus. Altered effective connectivities were also observed in the TBI group and were linked to the diminished activation in the left parietal region and precuneus. With regard to intra-DMN connectivity within the TBI group, positive correlations were found in verbal and visual memory with the language network, while a negative correlation was found in the cognitive domain with the visual network. Our results suggested that aberrant activities and functional connectivities within the DMN and with other RSNs were accompanied by the altered effective connectivities in the TBI group. These alterations were associated with impaired cognitive and memory domains in the TBI group, in particular within the language domain. These findings may provide insight for future TBI observational and interventional research

    Activation characteristics of the primary motor (M1) and supplementary motor (SMA) areas during robust unilateral finger tapping task

    Get PDF
    This study investigated the functional specialisation characteristics of brain in multiple right-hand dominant subjects pertaining to the activation of the cerebral motor cortices evoked by unilateral finger tapping, especially in primary motor (M1) and supplementary motor (SMA) areas. This multiple-subject study used unilateral (UNIright and UNIleft) selfpaced tapping of hand fingers to activate the M1 and SMA. Brain activation characteristics were analysed using statistical parametric mapping (SPM). Activation for UNIright and UNIleft showed the involvement of contralateral and ipsilateral M1 and SMA. A larger activation area but with a lower percentage of signal change (PSC) were observed in the left M1 due to the control on UNIright (4164 voxels at ฮฑ = 0.001, PSC = 1.650) as compared to the right M1 due to the control on UNIleft (2012 voxels at ฮฑ = 0.001, PSC = 2.377). This is due to the influence of the tapping rate effects which is greater than what could be produced by the average effects of the dominant and sub-dominant hands. The significantly higher PSC value observed in the right M1 (p < 0.05) is due to a higher control demand used by the brain in coordinating the tapping of the sub-dominant fingers. The findings obtained from this study showed strong evidence of the existence of brain functional specialisation and could be used as baseline references in determining the most probable motor pathways in a sample of subjects

    Pemerolehan, analisis dan interpretasi data fMRI: kehubungan efektif dalam korteks auditori primer manusia

    Get PDF
    Kajian ke atas sifat kehubungan efektif dalam korteks auditori dilakukan ke atas lima orang subjek Melayu lelaki sihat berumur antara 20 hingga 40 tahun menggunakan pengimejan resonans magnet kefungsian (fMRI), pemetaan statistik berparameter (SPM5) dan pemodelan dinamik penyebab (DCM). Paradigma pengimejan senyap digunakan untuk mengurangkan artifak bunyi pengimbas di atas imej kefungsian. Subjek dikehendaki menumpukan perhatian kepada stimulus hingar putih yang diperdengarkan secara binaural pada keamatan 70 dB lebih tinggi daripada aras pendengaran manusia normal. Pengkhususan kefungsian dikaji menggunakan perisian SPM5 yang berasaskan Matlab melalui analisis kesan malar (FFX), kesan rawak (RFX) dan konjunksi. Analisis individu ke atas semua subjek menunjukkan pengaktifan bilateral yang tidak simetri di antara korteks auditori kanan dan kiri pada kawasan Brodmann (BA)22, 41 dan 42 melibatkan korteks auditori primer dan sekunder. Tiga kawasan auditori di korteks auditori kanan dan kiri tersebut dipilih untuk penentuan kehubungan efektif melalui pembentukan sembilan model rangkaian. Kehubungan efektif ditentukan ke atas empat daripada lima subjek dengan mengecualikan seorang subjek yang mempunyai koordinat BA22 yang terletak terlalu jauh daripada koordinat BA22 yang diperoleh daripada analisis kumpulan. Keputusan DCM menunjukkan kewujudan kehubungan efektif di antara ketiga-tiga kawasan auditori yang dipilih di kedua-dua korteks auditori. Pada korteks auditori kanan, BA42 dikenalpasti sebagai pusat masukan dengan kehubungan efektif satu arah selari BA42 โ†’ BA41 dan BA42 โ†’ BA22. Walau bagaimanapun, untuk korteks auditori kiri, pusat masukan adalah BA41 dengan kehubungan efektif satu arah selari BA41โ†’BA42 dan BA41โ†’BA22. Kehubungan di antara kawasan auditori yang mengalami pengaktifan mencadangkan kewujudan lintasan isyarat dalam korteks auditori walaupun semasa subjek mendengar bunyi hinga

    Low intensity white noise improves performing in auditory working memory taks: an FMRI study

    No full text
    Research suggests that white noise may facilitate auditory working memory performance via stochastic resonance. Stochastic resonance is quantified by plotting cognitive performance as a function of noise intensity. The plot would appear as an inverted U-curve, that is, a moderate noise is beneficial for performance whereas too low and too much noise attenuates performance. However, knowledge about the optimal signal-to-noise ratio (SNR) needed for stochastic resonance to occur in the brain, particularly in the neural network of auditory working memory, is limited and demand further investigation. In the present study, we extended previous works on the impact of white noise on auditory working memory performance by including multiple background noise levels to map out the inverted U-curve for the stochastic resonance. Using functional magnetic resonance imaging (fMRI), twenty healthy young adults performed a word-based backward recall span task under four signal-to-noise ratio conditions: 15, 10, 5, and 0-dB SNR. Group results show significant behavioral improvement and increased activation in frontal cortices, primary auditory cortices, and anterior cingulate cortex in all noise conditions, except at 0-dB SNR, which decreases activation and performance. When plotted as a function of signal-to-noise ratio, behavioral and fMRI data exhibited a noise-benefit inverted U-shaped curve. Additionally, a significant positive correlation was found between the activity of the right superior frontal gyrus (SFG) and performance in 5- dB SNR. The predicted phenomenon of SR on auditory working memory performance is confirmed. Findings from this study suggest that the optimal signal-to-noise ratio to enhance auditory working memory performance is within 10 to 5-dB SNR and that the right SFG may be a strategic structure involved in enhancement of auditory working memory performance

    Low intensity white noise improves performance in auditory working memory task:An fMRI study

    Get PDF
    Research suggests that white noise may facilitate auditory working memory performance via stochastic resonance. Stochastic resonance is quantified by plotting cognitive performance as a function of noise intensity. The plot would appear as an inverted U-curve, that is, a moderate noise is beneficial for performance whereas too low and too much noise attenuates performance. However, knowledge about the optimal signal-to-noise ratio (SNR) needed for stochastic resonance to occur in the brain, particularly in the neural network of auditory working memory, is limited and demand further investigation. In the present study, we extended previous works on the impact of white noise on auditory working memory performance by including multiple background noise levels to map out the inverted U-curve for the stochastic resonance. Using functional magnetic resonance imaging (fMRI), twenty healthy young adults performed a word-based backward recall span task under four signal-to-noise ratio conditions: 15, 10, 5, and 0-dB SNR. Group results show significant behavioral improvement and increased activation in frontal cortices, primary auditory cortices, and anterior cingulate cortex in all noise conditions, except at 0-dB SNR, which decreases activation and performance. When plotted as a function of signal-to-noise ratio, behavioral and fMRI data exhibited a noise-benefit inverted U-shaped curve. Additionally, a significant positive correlation was found between the activity of the right superior frontal gyrus (SFG) and performance in 5-dB SNR. The predicted phenomenon of SR on auditory working memory performance is confirmed. Findings from this study suggest that the optimal signal-to-noise ratio to enhance auditory working memory performance is within 10 to 5-dB SNR and that the right SFG may be a strategic structure involved in enhancement of auditory working memory performance. ยฉ 201
    corecore