11 research outputs found

    Spatiotemporal Impact of Precipitation Trend on LULC Using Satellite Remote Sensing Technique in Khirthar National Park, Sindh Pakistan

    Get PDF
    : Water footprint techniques are extensively used for essential life chores. It also maintains the naturalecosystem. The variations in climatic spell are not only important to investigate the past and current scenarios, but it isalso useful to develop the water resource projects. The current study explored the spatial-temporal climatic variation ofdry and wet periods (between 1998 and 2010) using the digital image processing technique of ENVI (Environment forVisualizing Images) classics, satellite remote sensing g (SRS), and GIS. The results are organized for the reported periodi.e. between 1998 and 2010, showing the change detection of the hydrological effect in the dry and wet years. It shows asignificant change in the land use land cover (LULC) of vegetation, water, settlement, and ephemeral rivers followed by91%, 97.45%, 94.40%, and 62.94 % respectively through the wet year of 2010, in association with the dry period of1998. For more authentications, the Normalized Difference Vegetative Index (NDVI) image difference of the wet anddry period has also been evaluated, which has shown vegetation in large areas with more water potential in the wet year2010. The water potential can be used by diverting it to the natural depressions, ditches, and ponds for storage purposesand to increase recharge of groundwater by increasing its quality and quantity. The stored water could be utilized in thedrought-prone days for sustainable agriculture activities, to reduce the migration rate of the community, and to improvethe socio-economic conditions in the study area of Khirthar National Park

    Sensitivity of Direct Runoff to Curve Number Using the SCS-CN Method

    Get PDF
    This study explores the impact of runoff curve number (CN) on the hydrological model outputs for the Morai watershed, Sindh-Pakistan, using the Soil Conservation Service Curve Number (SCS-CN) method. The SCS-CN method is an empirical technique used to estimate rainfall-runoff volume from precipitation in small watersheds, and CN is an empirically derived parameter used to calculate direct runoff from a rainfall event. CN depends on soil type, its condition, and the land use and land cover (LULC) of an area. Precise knowledge of these factors was not available for the study area, and therefore, a range of values was selected to analyze the sensitivity of the model to the changing CN values. Sensitivity analysis involves a methodological manipulation of model parameters to understand their impacts on model outputs. A range of CN values from 40-90 was selected to determine their effects on model results at the sub-catchment level during the historic flood year of 2010. The model simulated 362 cumecs of peak discharge for CN=90; however, for CN=40, the discharge reduced substantially to 78 cumecs (a 78.46% reduction). Event-based comparison of water volumes for different groups of CN values—90-75, 80-75, 75-70, and 90-40 —showed reductions in water availability of 8.88%, 3.39%, 3.82%, and 41.81%, respectively. Although it is known that the higher the CN, the greater the discharge from direct runoff and the less initial losses, the sensitivity analysis quantifies that impact and determines the amount of associated discharges with changing CN values. The results of the case study suggest that CN is one of the most influential parameters in the simulation of direct runoff. Knowledge of accurate runoff is important in both wet (flood management) and dry periods (water availability). A wide range in the resulting water discharges highlights the importance of precise CN selection. Sensitivity analysis is an essential facet of establishing hydrological models in limited data watersheds. The range of CNs demonstrates an enormous quantitative consequence on direct runoff, the exactness of which is necessary for effective water resource planning and management. The method itself is not novel, but the way it is proposed here can justify investments in determining the accurate CN before initiating mega projects involving rainfall-runoff simulations. Even a small error in CN value may lead to serious consequences. In the current study, the sensitivity analysis challenges the strength of the results of a model in the presence of ambiguity regarding CN value

    Projected Rainfall Variability Based on PRECIS Regional Model

    Get PDF
    The present study indicates the potential projected variation of decadal mean rainfall over Kohistan region of Sindh Province, Pakistan. Precipitation variability is a crucial climatic factor that affects human health and their settlements. In this study, the precipitation variability associated with climate change in Kohistan region, Sindh, Pakistan is simulated using the PRECIS regional climate modeling system. The study analyses the precipitation variability in the future for two spells (2021-2050 and 20712099) with respect to the past (1961-1990) climate under the baseline ECHAM5 dataset for A1B Scenario at a resolution of 25x25 km. Based on this analyses, the precipitation scarcity is projected for 2021-2050 and 2071-2099 decades. The projected results showed a serious precipitation variation and shortfall of 12.60, 53.98, and 48.19% during 2031-2040,2041-2050 and 2081-2090 decades respectively as compared to baseline (1961-1990). The analyzed situation would be harmful to the water resources and agricultural production in the region during the shortfall, which imposes the adverse effect on the recharge of groundwater and quality. That might cause of long drought spell in the region. While during the 20212030 decade shown slight influence on the potential of hill torrents and groundwater recharge. However, the results reveal for the period of 2071-2080 and 2091-2099, the extreme floods with 60.50 and 70.50% are projected as compared to baseline 1961-1990. The increasing trend of precipitation indicates additional recharge of fresh groundwater and quality, with increasing level of aquifers, subsequently more agricultural production would be expected with alternate employment opportunities in the water sector. The projected results, indicating the decadal scenarios of the drought and wet spells in the region by the precipitation variation, which may impact on the hill torrents, groundwater and agricultural production, and employment opportunities. These quantitative projections should enable policymakers and stakeholders to plan for future measures

    Modelling and development of sustainable energy systems

    Get PDF
    Due to the recent climate change, organizations all over the globe are developing plans for reducing carbon emissions by developing clean energy technologies and energy efficient devices. However, the path for transition to green energy system is still unclear and in general, the representation of green energy supply for transition pathways is limited. Therefore, this study outlines a plan for getting Swedish energy sector completely carbon neutral by 2050. The approach can also be applicable to the majority of nations worldwide. Computer based simulations are performed on Energy PLAN software for making clean, green and sustainable energy system that can balance every component of entire energy system during the study period 2022 to 2050. This study takes into account the sustainable use of renewable sources for all economic sectors as well as the interchange of energy with nearby nations under the two scenarios. Additionally, the energy system works in tandem with other industries to create a fully carbon-free environment. The results revealed that, 50% de-carbonization is possible till 2035 and 100% de-carbonization is possible till 2050. This enables a discussion of how ambitious 10-year goals might serve as a first step toward the mid-century elimination of fossil fuels from the energy sector

    The role of techno-economic factors for net zero carbon emissions in Pakistan

    Get PDF
    The Government of Pakistan has established clean energy transition goals in the national Alternative and Renewable Energy (ARE) Policy. The goal of this policy is to increase the 30% capacity of green energy in total energy mix by 2030. In this regard, the aim of this study is to develop a de-carbonization plan for achieving net zero emissions through the deployment of a green energy system for the period 2021 to 2040 by incorporating the ARE policy targets. The Low Emissions Analysis Platform (LEAP®) software is used for finding the unidirectional causality among gross domestic product, population within the country, energy demand, renewable energy production and CO2 emissions for Pakistan. The results revealed that energy production of 564.16 TWh is enough to meet the energy demand of 480.10 TWh with CO2 emissions of 22.19 million metric tons, having a population of 242.1 million people and GDP growth rate of 5.8%, in the year 2040 in Pakistan. The share of green energy production is 535.07 TWh, which can be utilized fully for meeting energy demand in the country, and almost zero emissions will produce till 2040. CO2 emissions produced by burning natural gas were 20.64 million metric tons in 2020, which then reduced to 3.25 million metric tons in 2040. CO2 emissions produced by burning furnace oil are also reduced from 4.19 million metric tons in 2020 to 2.06 million metric tons in 2040. CO2 emissions produced by burning coal were 24.85 million metric tons in 2020, which then reduced to 16.88 million metric tons in 2040. Energy demand is directly related to the population and GDP of the country, while renewable utilization is inversely proportional to carbon emissions. The declining trend of carbon emissions in Pakistan would help to achieve net zero emissions targets by mid-century. This technique would bring prosperity in the development of a clean, green and sustainable environment

    Estimation of irrigation water requirement and irrigation scheduling for major crops using the CROPWAT model and climatic data

    No full text
    The world is facing an acute water shortage. The present irrigation techniques used in the Hyderabad district, Pakistan, are not demand-driven. The present study was carried out to determine the crop water requirement (CWR), irrigation water requirement (IWR), and irrigation scheduling for major crops grown in the Hyderabad district using the CROPWAT model based on climatic, soil, and crop data. The analysis revealed that the total CWR for the entire growing season for sugarcane, banana, cotton, and wheat were 3,127.0; 2,012.3; 1,073.5; and 418.9 mm, respectively. However, the IWR for sugarcane, banana, cotton, and wheat for the entire growing season was found to be 2,964.0; 1,966.7; 1,052.7; and 407.6 mm, respectively. However, the contribution of rainfall was 163.0, 45.6, 20.8, and 11.3 mm during sugarcane, banana, cotton, and wheat, respectively. The CWR and IWR were higher during the dry season due to high temperatures and low relative humidity. However, the IWR of each crop was low in the initial stage which increased with the growing stage until the peak at the full growth stage. The study recommends the use of CROPWAT to investigate the irrigation water requirements with accuracy. HIGHLIGHTS Investigation for crop water requirement (CWR) for wheat, cotton, banana, and sugarcane.; Investigation for irrigation water requirement (IWR).; Investigation for irrigation scheduling.; Use of climatic, soil, and crop data.; Use of scientific tools, i.e., CROPWAT and CLIMAT models.

    Open pit slope stability analysis in soft rock formations at Thar Coalfield Pakistan

    No full text
    Slope Stability Analysis is one of the main aspects of Open-pit mine planning because the calculations regarding the stability of slopes are necessary to assess the stability of the open pit slopes together with the financial feasibility of the mining operations. This study was conducted to analyse the effect of groundwater on the shear strength properties of soft rock formations and determine the optimum overall slope angle for an open pit coal mine at Thar Coalfield, Pakistan. Computer modelling and analysis of the slope models were performed using Slide (v. 5.0) and Phase2 (v. 6.0) software. Integrated use of Limit Equilibrium based Probabilistic (LE-P) analysis and Finite Element Method (FEM) based shear strength reduction analysis was performed to determine the safe overall slope angle against circular failure. Several pit slope models were developed at different overall slope angles and pore-water pressure ratio (Ru) coefficients. Each model was initially analysed under dry conditions and then by incorporating the effect of pore-water pressure coefficients of Ru = 0.1, 0.2, and 0.3 (partially saturated); finally, the strata were considered to be fully saturated. It was concluded that at an overall slope angle of 29 degrees, the overall slope will remain stable under dry and saturated conditions for a critical safety factor of 1.3

    Cascade Reservoirs: An Exploration of Spatial Runoff Storage Sites for Water Harvesting and Mitigation of Climate Change Impacts, Using an Integrated Approach of GIS and Hydrological Modeling

    No full text
    Torrents play an essential role in water resources through rainfall in arid to semi-arid mountainous regions, serving large populations worldwide, and are also crucial in maintaining the downstream environment. The natural flows (floods, ephemeral flows) in arid hill regions result in potential hydrological fluctuations caused by climate change. However, the feasibility of eventual storage in remote hilly catchments would force a more sudden change. The current study was conducted in the lower part of the Khirthar National Range in the Sindh province of Pakistan, with the aim to explore spatial runoff storage sites for sustainable development to mitigate the impacts of climate change in arid areas. In total, 83 years of precipitation data were used to estimate water availability, along with satellite imagery for LULC pre- and post-monsoon conditions, delineation of watersheds, and identification of potential runoff storage locations and return periods, using Remote Sensing (RS)/Geographical Information System (GIS) 10.5.1, HEC-HMS 3.1, and Origin Pro 9.0 for statistical approaches. The model delineated two potential watersheds: Goth Sumar, covering an area of 61.0456 km2, wherein ten cascading reservoirs were identified, and Goth Baro, covering an area of 14,236 km2, wherein two cascading reservoirs were identified. Different storage capacities were determined for the cascade-type reservoirs. The maximum live volumetric potential storage of the reservoirs varies from 0.25 to 1.32 million cubic meters (MCM) in the villages of Baro and Sumar. The return periods have been estimated at 5, 10, 20, 25, 50, and 75 years, corresponding to 12.35, 16.47, 21.43, 21.72, 25.21, and 40.53 MCM for Goth Sumar, while Goth Baro’s storage capacity has been estimated at 2.88, 3.84, 5.00, 5.06, 5.88, and 9.45 MCM, respectively. All results obtained were authenticated using accuracy assessment, validation, and sensitivity analysis. The proposed potential storage sites were recommended for a planning period of five years. The live storage capacity of the identified cascade reservoirs can be improved by raising the marginal banks and developing the spillways to control inlet and outlet flow in order to maintain internal pressure on the reservoir banks. The stored water can be used for climate-friendly agricultural activities to increase crop production and productivity. The proposed study area has extensive experience with flood irrigation systems and rainwater harvesting to sustain agriculture due to rainfall being the only water resource (WR) in the region. However, the study area has enormous potential for surface runoff WRs, especially during the rainy season (monsoon); the current 2022 monsoon is showing flooding. The modeling approaches of Remote Sensing, GIS, and HEC-HMS play an important role in delineating watershed areas, developing hydrographs, and simulating water availability for different return periods by minimizing cost and time

    Study of GIS-based groundwater potential zones for agricultural sustainability in the arid region

    No full text
    The cluster-wise area of shallow and deep aquifer zones is used to estimate the potential of groundwater. The potential of the shallow aquifer zone is estimated at 4.61 MCM (million cubic meters) and for the deep aquifer zone at 17,509.03 MCM, while the total groundwater potential for both aquifer zones is estimated at 17,513.64 MCM. The Geographical Information System (GIS) was employed efficiently to estimate the subsurface volume of the lithological rock layers using cost-effective and time-saving techniques, while the Rockwork software integrated with GIS was successfully used to visualize the subsurface lithology and stratigraphy of the aquifer zones. The estimated potential of groundwater can be uncovered by using the alternative solar pumping system to improve the agricultural system in the study area, thereby reducing the migration rate, reducing poverty, and improving the socio-economic conditions of livelihood. In the future, too, it will be essential to design water quality studies to ensure the proper use of groundwater. HIGHLIGHTS The current study discovered two potential groundwater zones of the (shallow and deep) aquifer.; The potential of the groundwater has been estimated using GIS for future planning and development.; The overall groundwater potential for both aquifer zones is estimated at 17,513.64 MCM.
    corecore