5 research outputs found

    Providing fundamental and applied insights into Fischer-Tropsch catalysis: Sasol-Eindhoven University of Technology collaboration

    No full text
    Although Fischer-Tropsch synthesis (FTS) was discovered more than 90 years ago, it remains a fascinating topic, having relevance from both an industrial and academic perspective. FTS based on cobalt and iron catalysts was studied in depth during an extensive 15-year collaboration between Eindhoven University of Technology, The Netherlands, and Sasol, South Africa. The primary objective of the collaboration was to obtain fundamental information that could assist in understanding practical issues in FTS over iron and cobalt catalysts. For iron-based catalysts, industrial slurry reactor work was combined with SSITKA and DFT modeling, resulting in improved clarity, with respect to the kinetics and mechanisms of FTS. This knowledge is important, with respect to designing large-scale industrial processes. In the case of cobalt-based FTS research, the combination of commercially relevant supported cobalt catalysts with sophisticated characterization tools, as well as the application of flat model catalyst systems, has led to significantly improved knowledge of deactivation mechanisms. This improved knowledge has assisted in the understanding of new catalysts systems and regeneration processes. Finally, the success of the collaboration has been due to many factors. It has been beneficial to both parties to have had a long-term collaboration, in which important fundamental catalysis topics were investigated that often took a substantial period of time. The access to high-quality modeling and characterization tools and fundamental understanding, as well as industrially relevant supported catalysts operated under realistic conditions, has proved vital in our contribution toward the advancement of the science and technology of FTS

    Ethanol Decomposition on Co(0001): C−O Bond Scission on a Close-Packed Cobalt Surface

    No full text
    Recently there has been a renewed interest in Co-catalyzed Fischer−Tropsch synthesis (FTS) from natural gas, coal, and biomass, because it offers a realistic alternative to crude oil as a source of transportation fuels. Efforts to understand the FT mechanism on the atomic level have mainly focused on theoretical methods, whereas experimental surface science results have only had little impact on the understanding of the mechanism. An essential step in any FT mechanism is scission of the C−O bond. On a flat Co(0001) surface direct dissociation of the CO molecule is practically impossible at FTS conditions. We have found for the first time experimentally that the C−O bond can be broken at 350 K even on the relatively inert Co(0001) surface if a C<sub><i>x</i></sub>H<sub><i>y</i></sub> group and a hydrogen atom are attached to the C-end of the C−O moiety
    corecore