9 research outputs found

    A Phase 1 Randomized, Double Blind, Placebo Controlled Rectal Safety and Acceptability Study of Tenofovir 1% Gel (MTN-007)

    Get PDF
    Objective: Rectal microbicides are needed to reduce the risk of HIV acquisition associated with unprotected receptive anal intercourse. The MTN-007 study was designed to assess the safety (general and mucosal), adherence, and acceptability of a new reduced glycerin formulation of tenofovir 1% gel. Methods: Participants were randomized 1:1:1:1 to receive the reduced glycerin formulation of tenofovir 1% gel, a hydroxyethyl cellulose placebo gel, a 2% nonoxynol-9 gel, or no treatment. Each gel was administered as a single dose followed by 7 daily doses. Mucosal safety evaluation included histology, fecal calprotectin, epithelial sloughing, cytokine expression (mRNA and protein), microarrays, flow cytometry of mucosal T cell phenotype, and rectal microflora. Acceptability and adherence were determined by computer-administered questionnaires and interactive telephone response, respectively. Results: Sixty-five participants (45 men and 20 women) were recruited into the study. There were no significant differences between the numbers of ≥ Grade 2 adverse events across the arms of the study. Likelihood of future product use (acceptability) was 87% (reduced glycerin formulation of tenofovir 1% gel), 93% (hydroxyethyl cellulose placebo gel), and 63% (nonoxynol-9 gel). Fecal calprotectin, rectal microflora, and epithelial sloughing did not differ by treatment arms during the study. Suggestive evidence of differences was seen in histology, mucosal gene expression, protein expression, and T cell phenotype. These changes were mostly confined to comparisons between the nonoxynol-9 gel and other study arms. Conclusions: The reduced glycerin formulation of tenofovir 1% gel was safe and well tolerated rectally and should be advanced to Phase 2 development. Trial Registration: ClinicalTrials.gov NCT01232803

    Evaluation of microporous polycaprolactone matrices for controlled delivery of antiviral microbicides to the female genital tract

    No full text
    Acyclovir (ACV) as a model antiviral microbicide, was incorporated in controlled-release polycaprolactone (PCL) matrices designed for application as intra-vaginal ring inserts (IVRs). Microporous materials incorporating acyclovir up to a level of similar to 10 % w/w were produced by rapidly cooling suspensions of drug powder in PCL solution followed by solvent extraction from the hardened matrices. Around 21, 50 and 78 % of the drug content was gradually released from matrices over 30 days in simulated vaginal fluid at 37 A degrees C, corresponding to drug loadings of 5.9, 7.0 and 9.6 % w/w. The release behaviour of matrices having the lowest drug loading followed a zero order model, whereas, the release kinetics of 7.0 and 9.6 % ACV-loaded PCL matrices could be described effectively by the Higuchi model, suggesting that Fickian diffusion is controlling drug release. Corresponding values of the diffusion co-efficient for ACV in the PCL matrices of 3.16 x 10(-9) and 1.07 x 10(-8) cm(2)/s were calculated. Plaque reduction assays provided an IC50 value of 1.09 mu g/mL for acyclovir against HSV-2 and confirmed the antiviral activity of released acyclovir against HSV-2 replication in primate kidney cells (Vero) at levels similar to 70 % that of non-formulated acyclovir at day 30. Estimated minimum in vivo acyclovir concentrations produced by a PCL IVR (19 mu g/mL) exceeded by a factor of 20 the IC50 value against HSV-2 and the reported ACV vaginal concentrations in women (0.5-1.0 mu g/mL) following oral administration. These findings recommend further investigations of PCL matrices for vaginal delivery of antiviral agents in the treatment and prevention of sexually transmitted infections such as AIDS
    corecore