138 research outputs found

    New Fractional Derivatives with Nonlocal and Non-Singular Kernel: Theory and Application to Heat Transfer Model

    Full text link
    In this manuscript we proposed a new fractional derivative with non-local and no-singular kernel. We presented some useful properties of the new derivative and applied it to solve the fractional heat transfer model.Comment: 8 Pages, The Journal Thermal Science, 201

    New numerical approach for fractional differential equations

    Full text link
    In the present case, we propose the correct version of the fractional Adams-Bashforth methods which take into account the nonlinearity of the kernels including the power law for the Riemann-Liouville type, the exponential decay law for the Caputo-Fabrizio case and the Mittag-Leffler law for the Atangana-Baleanu scenario. The Adams-Bashforth method for fractional differentiation suggested and are commonly use in the literature nowadays is not mathematically correct and the method was derived without taking into account the nonlinearity of the power law kernel. Unlike the proposed version found in the literature, our approximation, in all the cases, we are able to recover the standard case whenever the fractional power α=1\alpha=1.Comment: 19 pages, 3 figure

    A possible generalization of acoustic wave equation using the concept of perturbed derivative order

    Get PDF
    The standard version of acoustic wave equation is modified using the concept of the generalized Riemann-Liouville fractional order derivative. Some properties of the generalized Riemann-Liouville fractional derivative approximation are presented. Some theorems are generalized. The modified equation is approximately solved by using the variational iteration method and the Green function technique. The numerical simulation of solution of the modified equation gives a better prediction than the standard one

    A novel integral operator transform and its application to some FODE and FPDE with some kind of singularities

    Get PDF
    We introduced a novel integral transform operator. We proved the existence and the uniqueness of the relatively new operator. We presented some useful properties of the new operator. We presented the application of this operator for solving some kind of fractional ordinary and partial differential equation containing some kind of singularity

    Numerical Solution of a Kind of Fractional Parabolic Equations via Two Difference Schemes

    Get PDF
    A kind of parabolic equation was extended to the concept of fractional calculus. The resulting equation is, however, difficult to handle analytically. Therefore, we presented the numerical solution via the explicit and the implicit schemes. We presented together the stability and convergence of this time-fractional parabolic equation with two difference schemes. The explicit and the implicit schemes in this case are stable under some conditions

    Extension of Matched Asymptotic Method to Fractional Boundary Layers Problems

    Get PDF
    We were concerned with the description of the boundary layers problems within the scope of fractional calculus. However, we will note that one of the main methods used to solve these problems is the matched asymptotic method. We should mention that this was not achievable via the existing fractional derivative definitions, because they do not obey the chain rule. In order to accommodate the matched asymptotic method to the scope of fractional derivative, we proposed a relatively new derivative called the beta-derivative. We presented some useful information for this operator. With the reward of this operator, we presented the idea of matched asymptotic method in finding solutions of the fractional boundary layers problems. The method was illustrated with an example

    A Modified Groundwater Flow Model Using the Space Time Riemann-Liouville Fractional Derivatives Approximation

    Get PDF
    The notion of uncertainty in groundwater hydrology is of great importance as it is known to result in misleading output when neglected or not properly accounted for. In this paper we examine this effect in groundwater flow models. To achieve this, we first introduce the uncertainties functions u as function of time and space. The function u accounts for the lack of knowledge or variability of the geological formations in which flow occur (aquifer) in time and space. We next make use of Riemann-Liouville fractional derivatives that were introduced by Kobelev and Romano in 2000 and its approximation to modify the standard version of groundwater flow equation. Some properties of the modified Riemann-Liouville fractional derivative approximation are presented. The classical model for groundwater flow, in the case of density-independent flow in a uniform homogeneous aquifer is reformulated by replacing the classical derivative by the Riemann-Liouville fractional derivatives approximations. The modified equation is solved via the technique of green function and the variational iteration method
    corecore