80 research outputs found

    An Overview of the Recent Developments in Metal Matrix Nanocomposites Reinforced by Graphene

    Get PDF
    Two-dimensional graphene plateletes with unique mechanical, electrical and thermo-physical properties could attract more attention for their employed as reinforcements in the production of new metal matrix nanocomposites (MMNCs), due to superior characteristics, such as being lightweight, high strength and high performance. Over the last years, due to the rapid advances of nanotechnology, increasing demand for the development of advanced MMNCs for various applications, such as structural engineering and functional device applications, has been generated. The purpose of this work is to review recent research into the development in the powder-based production, property characterization and application of magnesium, aluminum, copper, nickel, titanium and iron matrix nanocomposites reinforced with graphene. These include a comparison between the properties of graphene and another well-known carbonaceous reinforcement (carbon nanotube), following by powder-based processing strategies of MMNCs above, their mechanical and tribological properties and their electrical and thermal conductivities. The effects of graphene distribution in the metal matrices and the types of interfacial bonding are also discussed. Fundamentals and the structure–property relationship of such novel nanocomposites have also been discussed and reported

    An Overview of Metal Matrix Nanocomposites Reinforced with Graphene Nanoplatelets; Mechanical, Electrical and Thermophysical Properties

    Get PDF
    Two-dimensional graphene nanoplatelets with unique electrical, mechanical and thermophysical characteristics are considered as an interesting reinforcement to develop new lightweight, high-strength, and high-performance metal matrix nanocomposites. On the other hand, by the rapid progress of technology in recent years, development of advanced materials like new metal matrix nanocomposites for structural engineering and functional device applications is a priority for various industries. This article provides an overview of research efforts with an emphasis on the fabrication and characterization of different metal matrix nanocomposites reinforced by graphene nanoplatelets (GNPs). Particular attention is devoted to find the role of GNPs on the final electrical and thermal conductivity, the coefficient of thermal expansion, and mechanical responses of aluminum, magnesium and copper matrix nanocomposites. In sum, this review pays specific attention to the structure-property relationship of these novel nanocomposites

    An investigation on the effect of deposition pattern on the microstructure, mechanical properties and residual stress of 316L produced by Directed Energy Deposition

    Get PDF
    Abstract In this work, 316L cubes were produced by Directed Energy Deposition (DED) process. To evaluate the effect of deposition patterns on the microstructure, mechanical performance and residual stress of 316L samples, two different deposition strategies are selected (67° and 90°). The general microstructure is revealed, and then the effect of deposition pattern on the microstructure of 316L alloy is evaluated through the Primary Cellular Arm Spacing (PCAS) analysis. The cooling rate in each sample is estimated according to the PCAS values. Interestingly, it is found that by increasing the rotation angle per layer, the PCAS value decreases as a consequence of increment in the cooling rate. On the other hand, in both cases, by increasing the distance from the substrate, due to the changes in cooling mechanisms, the cooling rate at first decreases and then at the last layers increases again. The phase composition analysis of 316L samples confirms the predictions that suggested the presence of residual δ-ferrite in the final microstructure. In fact, the final microstructure of samples is characterized by austenitic dendrites together with some residual δ-ferrite in the interdendritic regions. Moreover, the microstructural evaluations exhibit that during the DED process, some metallic inclusions are formed within the 316L samples that consequently deteriorates their mechanical properties. Tensile results show that the samples with 90° rotation per layer have a better mechanical performance such as slightly higher ultimate tensile strength and almost 35% higher elongation to fracture, mainly owing to their finer microstructure and slightly less oxide content. However, in both cases, the elongation of the 316L samples is lower than the typical elongation of this material produced via DED. This discrepancy is found to be as a result of higher inclusions contents in the samples produced in this work with respect to those of literature. Lastly, it is found that the residual stresses on the top surfaces are similar for both deposition patterns, although higher stress values are observed on the lateral surfaces of the cubes produce using the 90° rotation per layer

    Effect of Solution Treatment on Precipitation Behaviors, Age Hardening Response and Creep Properties of Elektron21 Alloy Reinforced by AlN Nanoparticles

    Get PDF
    In the present study, the solution and ageing treatments behavior of Mg-RE-Zr-Zn alloy (Elektron21) and its nano-AlN reinforced nanocomposites have been evaluated. The properties of the thermal-treated materials were investigated in terms of Vickers hardness, the area fraction of precipitates, microstructure and phase composition. The solution treatments were performed by treating at 520 ◦C, 550 ◦C and 580 ◦C in argon atmosphere. The outcomes show that the hardness of the solutionized alloys was slightly affected by the solution temperature. X-ray diffraction and image analysis revealed that the complete dissolution of precipitates was not possible, neither for Elektron21 (El21) nor for its AlN containing nanocomposites. The ageing treatment of El21 led to a significant improvement in hardness after 20 h, while for longer times, it progressively decreased. The effect of ageing on the hardness of El21–AlN composites was found to be much less than this effect on the hardness of the host alloy. Electron backscatter diffraction (EBSD) analysis of El21 and El21–1%AlN after solution treatment confirm the random orientation of grains with a typical texture of random distribution. The as-cast creep results showed that the incorporation of nanoparticles could effectively improve the creep properties, while the results after solution treatment at 520 ◦C for 12 h followed by ageing treatment at 200 ◦C for 20 h confirmed that the minimum creep rate of T6-El21 was almost equal to the as-cast El21–AlN

    New Nanocomposite Materials with Improved Mechanical Strength and Tailored Coefficient of Thermal Expansion for Electro-Packaging Applications

    Get PDF
    In this research, copper nanocomposites reinforced by graphene nanoplatelets (GNPs) were fabricated using a wet mixing method followed by a classical powder metallurgy route. In order to find the best dispersion technique, ball milling and wet mixing were chosen. Qualitative evaluation of the structure of the graphene after mixing indicated that the wet mixing is an appropriate technique to disperse the GNPs. Thereafter, the influence of graphene content on microstructure, density, hardness, elastic modulus, and thermal expansion coefficient of composites was investigated. It was shown that by increasing the graphene content the aggregation of graphene is more obvious and, thus, these agglomerates affect the final properties adversely. In comparison with the unreinforced Cu, Cu–GNP composites were lighter, and their hardness and Young’s modulus were higher as a consequence of graphene addition. According to the microstructural observation of pure copper and its composites after sintering, it was concluded that grain refinement is the main mechanism of strengthening in this research. Apart from the mechanical characteristics, the coefficient of thermal expansion of composites decreased remarkably and the combination of this feature with appropriate mechanical properties can make them a promising candidate for use in electronic packaging applications

    Microstructural Evolutions and its Impact on the Corrosion Behaviour of Explosively Welded Al/Cu Bimetal

    Get PDF
    In this study, the microstructural evolutions and corrosion resistance of aluminium/copper joint fabricated through explosive welding process have been thoroughly investigated, while stand-off distance was variable. Microstructural analyses demonstrate that, regardless of grain refinement in the welding boundary, increasing the stand-off space is followed by a higher thickness of the localized melting pool. X-Ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDS) analyses recognized the binary intermetallic layers as a combination of Al2Cu and AlCu. Polarization and electrochemical impedance spectroscopy (EIS) corrosion tests revealed that a higher stand-off distance resulted in the increment of corrosion potential, current rate, and concentration gradient at the interface owing to the remarkable kinetic energy of the collision, which impaired corrosion resistance

    An Overview of Key Challenges in the Fabrication of Metal Matrix Nanocomposites Reinforced by Graphene Nanoplatelets

    Get PDF
    This article provides an overview of research efforts with an emphasis on the fabrication of metal matrix nanocomposites (MMNCs) reinforced by graphene nanoplatelets (GNPs). Particular attention is devoted to finding the challenges in the production of MMNCs through the powder metallurgy techniques. The main technical challenges can be listed as: (I) reinforcement selection; (II) dispersion of reinforcement within the matrix; (III) reactivity between the reinforcement and matrix; (IV) interfacial bonding; (V) preferred orientation of reinforcement. It is found that some of these difficulties can be attributed to the nature of the materials involved, while the others are related to the preparation routes. It is reported that the challenges related to the process can often be addressed by changing the production process or by using post-processing techniques. More challenging issues instead are related to the composition of the matrix and reinforcement, their reactivity and the dispersion of reinforcement. These topics still bring significant challenges to the materials scientists, and it would be worth mentioning that the fabrication of MMNCs with a uniform dispersion of reinforcement, strong interfacial bonding, without detrimental reactions and improved isotropic properties is still a puzzling issu

    A Comprehensive Overview on the Latest Progress in the Additive Manufacturing of Metal Matrix Composites: Potential, Challenges, and Feasible Solutions

    Get PDF
    Nowadays, as an emerging technology, additive manufacturing (AM) has received numerous attentions from researchers around the world. The method comprises layer-by-layer manufacturing of products according to the 3D CAD models of the objects. Among other things, AM is capable of producing metal matrix composites (MMCs). Hence, plenty of works in the literature are dedicated to developing different types of MMCs through AM processes. Hence, this paper provides a comprehensive overview on the latest research that has been carried out on the development of the powder-based AM manufactured MMCs from a scientific and technological viewpoint, aimed at highlighting the opportunities and challenges of this innovative manufacturing process. For instance, it is documented that AM is not only able to resolve the reinforcement/matrix bonding issues usually faced with during conventional manufacturing of MMCs, but also it is capable of producing functionally graded composites and geometrically complex objects. Furthermore, it provides the opportunity for a uniform distribution of the reinforcing phase in the metallic matrix and is able to produce composites using refractory metals thanks to the local heat source employed in the method. Despite the aforementioned advantages, there are still some challenges needing more attention from the researchers. Rapid cooling nature of the process, significantly different coefficient of expansion of the matrix and reinforcement, processability, and the lack of suitable parameters and standards for the production of defect-free AM MMCs seem to be among the most important issues to deal with in future works

    Tribological behaviour of AZ31 magnesium alloy reinforced by bimodal size B4C after precipitation hardening

    Get PDF
    Abstract This study investigated dry sliding wear properties of AZ31 magnesium alloy and B4C-reinforced AZ31 composites containing 5, 10, and 20 wt.% B4C with bimodal sizes under different loadings (10–80 N) at various sliding speeds (0.1–1 m/s) via the pin-on-disc configuration. Microhardness evaluations showed that when the distribution of B4C particles was uniform the hardness of the composites increased by enhancing the reinforcement content. The unreinforced alloy and the composite samples were examined to determine the wear mechanism maps and identify the dominant wear mechanisms in each wear condition and reinforcement content. For this purpose, wear rates and friction coefficients were recorded during the wear tests and worn surfaces were characterized by scanning electron microscopy and energy dispersive X-ray spectrometry analyses. The determined wear mechanisms were abrasion, oxidation, delamination, adhesion, and plastic deformation as a result of thermal softening and melting. The wear evaluations revealed that the composites containing 5 and 10 wt.% B4C had a significantly higher wear resistance in all the conditions. However, 20 wt.% B4C/AZ31 composite had a lower resistance at high sliding speeds (0.5–1 m/s) and high loadings (40–80 N) in comparison with the unreinforced alloy. The highest wear resistance was obtained at high sliding speeds and low loadings with the domination of oxidative wear
    • …
    corecore