3 research outputs found

    Deep Brain Stimulation in Moroccan Patients With Parkinson's Disease: The Experience of Neurology Department of Rabat

    Get PDF
    Introduction: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is known as a therapy of choice of advanced Parkinson's disease. The present study aimed to assess the beneficial and side effects of STN DBS in Moroccan Parkinsonian patients.Material and Methods: Thirty five patients underwent bilateral STN DBS from 2008 to 2016 in the Rabat University Hospital. Patients were assessed preoperatively and followed up for 6 to 12 months using the Unified Parkinson's Disease Rating Scale in four conditions (stimulation OFF and ON and medication OFF and ON), the levodopa-equivalent daily dose (LEDD), dyskinesia and fluctuation scores and PDQ39 scale for quality of life (QOL). Postoperative side effects were also recorded.Results: The mean age at disease onset was 42.31 ± 7.29 years [28–58] and the mean age at surgery was 54.66 ± 8.51 years [34–70]. The median disease duration was 11.95 ± 4.28 years [5–22]. Sixty-three percentage of patients were male. 11.4% of patients were tremor dominant while 45.71 showed akinetic-rigid form and 42.90 were classified as mixed phenotype. The LEDD before surgery was 1200 mg/day [800-1500]. All patients had motor fluctuations whereas non-motor fluctuations were present in 61.80% of cases. STN DBS decreased the LEDD by 51.72%, as the mean LEDD post-surgery was 450 [188-800]. The UPDRS-III was improved by 52.27%, dyskinesia score by 66.70% and motor fluctuations by 50%, whereas QOL improved by 27.12%. Post-operative side effects were hypophonia (2 cases), infection (3 cases), and pneumocephalus (2 cases).Conclusion: Our results showed that STN DBS is an effective treatment in Moroccan Parkinsonian patients leading to a major improvement of the most disabling symptoms (dyskinesia, motor fluctuation) and a better QOL

    Evaluation of the GPM-IMERG Precipitation Product for Flood Modeling in a Semi-Arid Mountainous Basin in Morocco

    No full text
    International audienceA new precipitation dataset is provided since 2014 by the Global Precipitation Measurement (GPM) satellite constellation measurements combined in the Integrated Multi-satellite Retrievals for GPM (IMERG) algorithm. This recent GPM-IMERG dataset provides potentially useful precipitation data for regions with a low density of rain gauges. The main objective of this study is to evaluate the accuracy of the near real-time product (IMERG-E) compared to observed rainfall and its suitability for hydrological modeling over a mountainous watershed in Morocco, the Ghdat located upstream the city of Marrakech. Several statistical indices have been computed and a hydrological model has been driven with IMERG-E rainfall to estimate its suitability to simulate floods during the period from 2011 to 2018. The following results were obtained: (1) Compared to the rain gauge data, satellite precipitation data overestimates rainfall amounts with a relative bias of +35.61% (2) In terms of the precipitation detection capability, the IMERG-E performs better at reproducing the different precipitation statistics at the catchment scale, rather than at the pixel scale (3) The flood events can be simulated with the hydrological model using both the observed and the IMERG-E satellite precipitation data with a Nash–Sutcliffe efficiency coefficient of 0.58 and 0.71, respectively. The results of this study indicate that the GPM-IMERG-E precipitation estimates can be used for flood modeling in semi-arid regions such as Morocco and provide a valuable alternative to ground-based precipitation measurements

    Spatiotemporal Assessment and Correction of Gridded Precipitation Products in North Western Morocco

    No full text
    Accurate and spatially distributed precipitation data are fundamental to effective water resource management. In Morocco, as in other arid and semi-arid regions, precipitation exhibits significant spatial and temporal variability. Indeed, there is an intra- and inter-annual variability and the northwest is rainier than the rest of the country. In the Bouregreg watershed, this irregularity, along with a sparse gauge network, poses a major challenge for water resource management. In this context, remote sensing data could provide a viable alternative. This study aims precisely to evaluate the performance of four gridded daily precipitation products: three IMERG-V06 datasets (GPM-F, GPM-L, and GPM-E) and a reanalysis product (ERA5). The evaluation is conducted using 11 rain gauge stations over a 20-year period (2000–2020) on various temporal scales (daily, monthly, seasonal, and annual) using a pixel-to-point approach, employing different classification and regression metrics of machine learning. According to the findings, the GPM products showed high accuracy with a low margin of error in terms of bias, RMSE, and MAE. However, it was observed that ERA5 outperformed the GPM products in identifying spatial precipitation patterns and demonstrated a stronger correlation. The evaluation results also showed that the gridded precipitation products performed better during the summer months for seasonal assessment, with relatively lower accuracy and higher biases during rainy months. Furthermore, these gridded products showed excellent performance in capturing different precipitation intensities, with the highest accuracy observed for light rain. This is particularly important for arid and semi-arid regions where most precipitation falls under the low-intensity category. Although gridded precipitation estimates provide global coverage at high spatiotemporal resolutions, their accuracy is currently insufficient and would require improvement. To address this, we employed an artificial neural network (ANN) model for bias correction and enhancing raw precipitation estimates from the GPM-F product. The results indicated a slight increase in the correlation coefficient and a significant reduction in biases, RMSE, and MAE. Consequently, this research currently supports the applicability of GPM-F data in North Western Morocco
    corecore