387 research outputs found

    Storms in mobile networks

    Get PDF
    Mobile networks are vulnerable to signalling attacks and storms caused by traffic that overloads the control plane through excessive signalling, which can be introduced via malware and mobile botnets. With the advent of machine-to-machine (M2M) communications over mobile networks, the potential for signalling storms increases due to the normally periodic nature of M2M traffic and the sheer number of communicating nodes. Several mobile network operators have also experienced signalling storms due to poorly designed applications that result in service outage. The radio resource control (RRC) protocol is particularly susceptible to such attacks, motivating this work within the EU FP7 NEMESYS project which presents simulations that clarify the temporal dynamics of user behavior and signalling, allowing us to suggest how such attacks can be detected and mitigated

    Detection and mitigation of signaling storms in mobile networks

    Get PDF
    Mobile Networks are subject to "signaling storms" launched by malware or apps, which overload the the bandwidth at the cell, the backbone signaling servers, and Cloud servers, and may also deplete the battery power of mobile devices. This paper reviews the subject and discusses a novel technique to detect and mitigate such signaling storms. Through a mathematical analysis we introduce a technique based on tracking time-out transitions in the signaling system that can substantially reduce both the number of misbehaving mobiles and the signaling overload in the backbone

    Nonlinear Deterministic Observer for Inertial Navigation using Ultra-wideband and IMU Sensor Fusion

    Full text link
    Navigation in Global Positioning Systems (GPS)-denied environments requires robust estimators reliant on fusion of inertial sensors able to estimate rigid-body's orientation, position, and linear velocity. Ultra-wideband (UWB) and Inertial Measurement Unit (IMU) represent low-cost measurement technology that can be utilized for successful Inertial Navigation. This paper presents a nonlinear deterministic navigation observer in a continuous form that directly employs UWB and IMU measurements. The estimator is developed on the extended Special Euclidean Group SE2(3)\mathbb{SE}_{2}\left(3\right) and ensures exponential convergence of the closed loop error signals starting from almost any initial condition. The discrete version of the proposed observer is tested using a publicly available real-world dataset of a drone flight. Keywords: Ultra-wideband, Inertial measurement unit, Sensor Fusion, Positioning system, GPS-denied navigation.Comment: 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS

    Stochastic Finite Element Analysis of the Free Vibration of Laminated Composite Plates

    Get PDF

    X-Ray Co-Crystal Structure Guides the Way to Subnanomolar Competitive Ecto-5 '-Nucleotidase (CD73) Inhibitors for Cancer Immunotherapy

    Get PDF
    Ecto-5'-nucleotidase (CD73, EC 3.1.3.5) catalyzes the extracellular hydrolysis of AMP yielding adenosine, which induces immunosuppression, angiogenesis, metastasis, and proliferation of cancer cells. CD73 inhibition is therefore proposed as a novel strategy for cancer (immuno)therapy, and CD73 antibodies are currently undergoing clinical trials. Despite considerable efforts, the development of small molecule CD73 inhibitors has met with limited success. To develop a suitable drug candidate, a high resolution (2.05 degrees A) co-crystal structure of the CD73 inhibitor PSB-12379, a nucleotide analogue, in complex with human CD73 is determined. This allows the rational design and development of a novel inhibitor (PSB-12489) with subnanomolar inhibitory potency toward human and rat CD73, high selectivity, as well as high metabolic stability. A co-crystal structure of PSB-12489 with CD73 (1.85 degrees A) reveals the interactions responsible for increased potency. PSB-12489 is the most potent CD73 inhibitor to date representing a powerful tool compound and novel lead structure
    corecore