3 research outputs found
Disaster management in industrial areas: Perspectives, challenges and future research
Purpose: In most countries, development, growth, and sustenance of industrial facilities are given utmost importance due to the influence in the socio-economic development of the country. Therefore, special economic zones, or industrial areas or industrial cities are developed in order to provide the required services for the sustained operation of such facilities. Such facilities not only provide a prolonged economic support to the country but it also helps in the societal aspects as well by providing livelihood to thousands of people. Therefore, any disaster in any of the facilities in the industrial area will have a significant impact on the population, facilities, the economy, and threatens the sustainability of the operations. This paper provides review of such literature that focus on theory and practice of disaster management in industrial cities. Design/methodology/approach: In the paper, content analysis method is used in order to elicit the insights of the literature available. The methodology uses search methods, literature segregation and developing the current knowledge on different phases of industrial disaster management. Findings: It is found that the research is done in all phases of disaster management, namely, preventive phase, reactive phase and corrective phase. The research in each of these areas are focused on four main aspects, which are facilities, resources, support systems and modeling. Nevertheless, the research in the industrial cities is insignificant. Moreover, the modeling part does not explicitly consider the nature of industrial cities, where many of the chemical and chemical processing can be highly flammable thus creating a very large disaster impact. Some research is focused at an individual plant and scaled up to the industrial cities. The modeling part is weak in terms of comprehensively analyzing and assisting disaster management in the industrial cities. Originality/value: The comprehensive review using content analysis on disaster management is presented here. The review helps the researchers to understand the gap in the literature in order to extend further research for disaster management in large scale industrial cities.Scopu
The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance
INTRODUCTION
Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic.
RATIONALE
We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs).
RESULTS
Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants.
CONCLUSION
Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century