10 research outputs found

    Wound healing and analgesic effects of Brocchia cinerea essential oil in experimental animals

    Get PDF
    This study aimed to identify the main components of the essential oil extracted from Brocchia cinerea (Delile) Vis. via hydrodistillation and investigate its in vivo wound healing and analgesic properties. Thujone, santolina triene, camphor, and 1,8-cineole were among the compounds detected. Wounds were induced in mice and treated with essential oil, which resulted in accelerated wound healing and repair through topical application (88.1±1.1%). The study also evaluated the analgesic activity of the essential oil by administering intraperitoneal injections of acetic acid to mice. The results showed that B. cinerea essential oil at a dose of 400 mg/kg strongly inhibited pain, with a pain inhibition percentage of 95.5%. These findings indicate that the essential oil of B. cinerea has potential as a source of bioactive compounds that may have synergistic effects. Based on these results, the use of B. cinerea for therapeutic purposes in preventing pain and promoting wound healing is supported. These findings highlight the potential of B. cinerea in paving the way for future research aimed at the development of clinically valuable products

    Essential oils from wild populations of Algerian Lavandula stoechas L.: composition, chemical variability, and in vitro biological properties.

    No full text
    International audienceIn an effort to develop local productions of aromatic and medicinal plants, a comprehensive assessment of the composition and biological activities of the essential oils (EOs) extracted from the aerial flowering parts of wild growing Lavandula stoechas L. collected from eleven different locations in northern Algeria was performed. The oils were characterized by GC-FID and GC/MS analyses, and 121 compounds were identified, accounting for 69.88-91.2% of the total oil compositions. The eleven oils greatly differed in their compositions, since only 66 compounds were common to all oils. Major EO components were fenchone (2; 11.27-37.48%), camphor (3, 1.94-21.8%), 1,8-cineole (1; 0.16-8.71%), and viridiflorol (10; 2.89-7.38%). The assessed in vitro biological properties demonstrated that the DPPH-based radical-scavenging activities and the inhibition of the ÎČ-carotene/linoleic acid-based lipid oxidation differed by an eight-fold factor between the most and the least active oils and were linked to different sets of molecules in the different EOs. The eleven EOs exhibited good antimicrobial activities against most of the 16 tested strains of bacteria, filamentous fungi, and yeasts, with minimum inhibitory concentrations (MICs) ranging from 0.16 to 11.90 mg/ml
    corecore