3 research outputs found

    CUCKOO SEARCH ALGORITHM TO SOLVE THE PROBLEM OF ECONOMIC EMISSION DISPATCH WITH THE INCORPORATION OF FACTS DEVICES UNDER THE VALVE-POINT LOADING EFFECT

    Get PDF
    The essential objective of optimal power flow is to find a stable operating point which minimizes the cost of the production generators and its losses, and keeps the power system acceptable in terms of limits on the active and reactive powers of the generators. In this paper, we propose the nature-inspired Cuckoo search algorithm (CSA) to solve economic/emission dispatch problems with the incorporation of FACTS devices under the valve-point loading effect (VPE). The proposed method is applied on different test systems cases to minimize the fuel cost and total emissions and to see the influence of the integration of FACTS devices. The obtained results confirm the efficiency and the robustness of the Cuckoo search algorithm compared to other optimization techniques published recently in the literature. In addition, the simulation results show the advantages of the proposed algorithm for optimizing the production fuel cost, total emissions and total losses in all transmission lines

    Feasibility study of a hybrid plants (photovoltaic–LPG generator) system for rural electrification

    No full text
    The present study investigates the possibility of using a stand-alone photovoltaic/LPG (liquid petroleum gas) generator hybrid power system for low-cost electricity production which can satisfy the energy load requirements of a typical remote and isolated rural area. In this context, the optimal dimensions to improve the technical and economical performances of the hybrid system are determined according to the load energy requirements. The proposed system's installation and operating costs are simulated using the Hybrid Optimization Model for Electric Renewable (HOMER), the solar radiation and the system components costs as inputs; and then compared with those of other supply options such as diesel generation

    Feasibility study of a hybrid plants (photovoltaic–LPG generator) system for rural electrification

    No full text
    The present study investigates the possibility of using a stand-alone photovoltaic/LPG (liquid petroleum gas) generator hybrid power system for low-cost electricity production which can satisfy the energy load requirements of a typical remote and isolated rural area. In this context, the optimal dimensions to improve the technical and economical performances of the hybrid system are determined according to the load energy requirements. The proposed system's installation and operating costs are simulated using the Hybrid Optimization Model for Electric Renewable (HOMER), the solar radiation and the system components costs as inputs; and then compared with those of other supply options such as diesel generation
    corecore