49 research outputs found

    Le dynamisme du passif

    Get PDF
    La notion de "passif" désigne selon les cas : une voix, une diathèse, une tournure, un schéma, une construction, une transformation, une forme verbale, une action subie, un agent indéfini, un retournement sujet-objet, etc. Pour tenter d’y voir plus clair, l’effet de sens "passif" est interrogé à partir d’une approche privilégiant la pratique linguistique à la pratique de linguistique. Retrouver la dynamique énonciative et prédicative à partir de traces d’opérations marquées en surface. Restituer aux processus discursifs leur dynamisme intime. Mettre à l’épreuve un ensemble de concepts (ceux de la Praxématique en particulier) pour réhabiliter la cohésion discursive à l’écart d’une "grammaire de la phrase". Ces quelques ébauches seront confrontées à l’analyse d’un texte, qui, en restituant au passif sa dynamique discursive, en dégagera son statut linguistique : le passage de/vers l’impersonnel. L’espace interprétatif se verra attribuer sa place naturelle et indispensable et conduira à discerner le travail interprétatif de l’effet de sens qui n ’en est que le résultat, le produit élaboré

    Mechanical Properties and Microstructure of TIG and ATIG Welded 316L Austenitic Stainless Steel with Multi-Components Flux Optimization Using Mixing Design Method and Particle Swarm Optimization (PSO)

    No full text
    In this study, the effects of pseudo-ternary oxides on mechanical properties and microstructure of 316L stainless steel tungsten inert gas (TIG) and activating tungsten inert gas (ATIG) welded joints were investigated. The novelty in this work is introducing a metaheuristic technique called the particle swarm optimization (PSO) method to develop a mathematical model of the ultimate tensile strength (UTS) in terms of proportions of oxides flux. A constrained optimization algorithm available in Matlab 2020 optimization toolbox is used to find the optimal percentages of the selected powders that provide the maximum UTS. The study indicates that the optimal composition of flux was: 32% Cr2O3, 43% ZrO2, 8% Si2O, and 17% CaF2. The UTS was 571 MPa for conventional TIG weld and rose to 600 MPa for the optimal ATIG flux. The obtained result of hardness for the optimal ATIG was 176 HV against 175 HV for conventional TIG weld. The energy absorbed in the weld zone during the impact test was 267 J/cm2 for the optimal ATIG weld and slightly higher than that of conventional TIG weld 256 J/cm2. Fracture surface examined by scanning electron microscope (SEM) shows ductile fracture for ATIG weld with small and multiple dimples in comparison for TIG weld. Moreover, the depth of optimized flux is greater than that of TIG weld by two times. The ratio D/W was improved by 3.13 times. Energy dispersive spectroscopy (EDS) analysis shows traces of the sulfur element in the TIG weld zone

    Varia

    No full text

    Varia

    No full text

    Effect of Binary Oxide Flux on Weld Shape, Mechanical Properties and Corrosion Resistance of 2205 Duplex Stainless Steel Welds

    No full text
    Duplex stainless steel (DSSs) is characterized by excellent corrosion resistance with high strength. Twelve single-component fluxes (TiO2, Fe2O3, Cr2O3, ZnO, ZrO2, CaO, Mn2O3, V2O5, MoO3, SrO, MgO, and LaO2) were tested in the initial experiment using activated Tungsten inert gas (ATIG) technic, and then three couples of oxides were selected as binary fluxes (Fe2O3-Cr2O3, ZnO-Mn2O3, and V2O5-Mn2O3) for the rest of the study. The results show that the depth weld of binary oxides (Fe2O3-Cr2O3, ZnO-Mn2O3) was increased by 3.7 times in comparison with tungsten inert gas (TIG) weld bead. The hardness and the tensile strength of welds carried out with Fe2O3-Cr2O3 and ZnO-Mn2O3 binary fluxes were close to those of the parent metal. Weld bead executed with ZnO-Mn2O3 oxides has more capability to withstand sudden loads. Potentiodynamic polarization tests were performed. The metal welded with flux composed of Fe2O3-Cr2O3 has been found the most resistant to corrosion

    Particle Swarm Method for Optimization of ATIG Welding Process to Joint Mild Steel to 316L Stainless Steel

    No full text
    316L stainless steel joined to mild steel is widespread in several applications to reach a requested good association of mechanical properties at a lower cost. The activating tungsten inert gas (ATIG) weld was carried out using a modified flux composed of 76.63% SiO2 + 13.37% Cr2O3 + 10% NaF to meet standard recommendations in terms of limiting the root penetration. Modified optimal flux gave a depth of penetration 1.84 times greater than that of conventional tungsten inert gas (TIG) welds and a root penetration of up to 0.8 mm. The microstructure of the dissimilar joints was investigated using a scanning electron microscope and EDS analysis. The mechanical properties of the weld were not affected by the modified flux. The results show that the energy absorbed in the fusion zone in the case of ATIG weld (239 J/cm2) is greater than that of TIG weld (216 J/cm2). It was found that the weld bead obtained with the optimal flux combination in ATIG welding can better withstand sudden loads. The obtained UTS value (377 MPa) for ATIG welding was close to that of TIG welding (376 MPa). The average Vickers hardness readings for ATIG welds in the fusion zone are up to 277 HV, compared to 252 HV for conventional TIG welding

    Mechanical Properties and Microstructure of TIG and ATIG Welded 316L Austenitic Stainless Steel with Multi-Components Flux Optimization Using Mixing Design Method and Particle Swarm Optimization (PSO)

    No full text
    In this study, the effects of pseudo-ternary oxides on mechanical properties and microstructure of 316L stainless steel tungsten inert gas (TIG) and activating tungsten inert gas (ATIG) welded joints were investigated. The novelty in this work is introducing a metaheuristic technique called the particle swarm optimization (PSO) method to develop a mathematical model of the ultimate tensile strength (UTS) in terms of proportions of oxides flux. A constrained optimization algorithm available in Matlab 2020 optimization toolbox is used to find the optimal percentages of the selected powders that provide the maximum UTS. The study indicates that the optimal composition of flux was: 32% Cr2O3, 43% ZrO2, 8% Si2O, and 17% CaF2. The UTS was 571 MPa for conventional TIG weld and rose to 600 MPa for the optimal ATIG flux. The obtained result of hardness for the optimal ATIG was 176 HV against 175 HV for conventional TIG weld. The energy absorbed in the weld zone during the impact test was 267 J/cm2 for the optimal ATIG weld and slightly higher than that of conventional TIG weld 256 J/cm2. Fracture surface examined by scanning electron microscope (SEM) shows ductile fracture for ATIG weld with small and multiple dimples in comparison for TIG weld. Moreover, the depth of optimized flux is greater than that of TIG weld by two times. The ratio D/W was improved by 3.13 times. Energy dispersive spectroscopy (EDS) analysis shows traces of the sulfur element in the TIG weld zone
    corecore