28 research outputs found

    Users' Traces for Enhancing Arabic Facebook Search

    Get PDF
    International audienceThis paper proposes an approach on Facebook search in Arabic, which exploits several users' traces (e.g. comment, share, reactions) left on Facebook posts to estimate their social importance. Our goal is to show how these social traces (signals) can play a vital role in improving Arabic Facebook search. Firstly, we identify polarities (positive or negative) carried by the textual signals (e.g. comments) and non-textual ones (e.g. the reactions love and sad) for a given Facebook post. Therefore, the polarity of each comment expressed on a given Facebook post, is estimated on the basis of a neural sentiment model in Arabic language. Secondly, we group signals according to their complementarity using features selection algorithms. Thirdly, we apply learning to rank (LTR) algorithms to re-rank Facebook search results based on the selected groups of signals. Finally, experiments are carried out on 13,500 Facebook posts, collected from 45 topics in Arabic language. Experiments results reveal that Random Forests combined with ReliefFAttributeEval (RLF) was the most effective LTR approach for this task

    Improved Feature Selection Based on Chaos Game Optimization for Social Internet of Things with a Novel Deep Learning Model

    No full text
    The Social Internet of Things (SIoT) ecosystem tends to process and analyze extensive data generated by users from both social networks and Internet of Things (IoT) systems and derives knowledge and diagnoses from all connected objects. To overcome many challenges in the SIoT system, such as big data management, analysis, and reporting, robust algorithms should be proposed and validated. Thus, in this work, we propose a framework to tackle the high dimensionality of transferred data over the SIoT system and improve the performance of several applications with different data types. The proposed framework comprises two parts: Transformer CNN (TransCNN), a deep learning model for feature extraction, and the Chaos Game Optimization (CGO) algorithm for feature selection. To validate the framework’s effectiveness, several datasets with different data types were selected, and various experiments were conducted compared to other methods. The results showed that the efficiency of the developed method is better than other models according to the performance metrics in the SIoT environment. In addition, the average of the developed method based on the accuracy, sensitivity, specificity, number of selected features, and fitness value is 88.30%, 87.20%, 92.94%, 44.375, and 0.1082, respectively. The mean rank obtained using the Friedman test is the best value overall for the competitive algorithms

    Pneumonia detection on chest X-ray images using ensemble of deep convolutional neural networks

    Get PDF
    Pneumonia is a life-threatening lung infection resulting from several different viral infections. Identifying and treating pneumonia on chest X-ray images can be difficult due to its similarity to other pulmonary diseases. Thus, the existing methods for predicting pneumonia cannot attain substantial levels of accuracy. This paper presents a computer-aided classification of pneumonia, coined Ensemble Learning (EL), to simplify the diagnosis process on chest X-ray images. Our proposal is based on Convolutional Neural Network (CNN) models, which are pretrained CNN models that have been recently employed to enhance the performance of many medical tasks instead of training CNN models from scratch. We propose to use three well-known CNNs (DenseNet169, MobileNetV2, and Vision Transformer) pretrained using the ImageNet database. These models are trained on the chest X-ray data set using fine-tuning. Finally, the results are obtained by combining the extracted features from these three models during the experimental phase. The proposed EL approach outperforms other existing state-of-the-art methods and obtains an accuracy of 93.91% and a F1-score of 93.88% on the testing phase.Ministerio de Ciencia e InnovaciĂłn | Ref. PID2020-113795RBC3

    Arabic Sentiment Classification Using Convolutional Neural Network and Differential Evolution Algorithm

    No full text
    In recent years, convolutional neural network (CNN) has attracted considerable attention since its impressive performance in various applications, such as Arabic sentence classification. However, building a powerful CNN for Arabic sentiment classification can be highly complicated and time consuming. In this paper, we address this problem by combining differential evolution (DE) algorithm and CNN, where DE algorithm is used to automatically search the optimal configuration including CNN architecture and network parameters. In order to achieve the goal, five CNN parameters are searched by the DE algorithm which include convolution filter sizes that control the CNN architecture, number of filters per convolution filter size (NFCS), number of neurons in fully connected (FC) layer, initialization mode, and dropout rate. In addition, the effect of the mutation and crossover operators in DE algorithm were investigated. The performance of the proposed framework DE-CNN is evaluated on five Arabic sentiment datasets. Experiments’ results show that DE-CNN has higher accuracy and is less time consuming than the state-of-the-art algorithms

    Improved Feature Selection Based on Chaos Game Optimization for Social Internet of Things with a Novel Deep Learning Model

    No full text
    The Social Internet of Things (SIoT) ecosystem tends to process and analyze extensive data generated by users from both social networks and Internet of Things (IoT) systems and derives knowledge and diagnoses from all connected objects. To overcome many challenges in the SIoT system, such as big data management, analysis, and reporting, robust algorithms should be proposed and validated. Thus, in this work, we propose a framework to tackle the high dimensionality of transferred data over the SIoT system and improve the performance of several applications with different data types. The proposed framework comprises two parts: Transformer CNN (TransCNN), a deep learning model for feature extraction, and the Chaos Game Optimization (CGO) algorithm for feature selection. To validate the framework’s effectiveness, several datasets with different data types were selected, and various experiments were conducted compared to other methods. The results showed that the efficiency of the developed method is better than other models according to the performance metrics in the SIoT environment. In addition, the average of the developed method based on the accuracy, sensitivity, specificity, number of selected features, and fitness value is 88.30%, 87.20%, 92.94%, 44.375, and 0.1082, respectively. The mean rank obtained using the Friedman test is the best value overall for the competitive algorithms

    Text Classification Based on Convolutional Neural Networks and Word Embedding for Low-Resource Languages: Tigrinya

    No full text
    This article studies convolutional neural networks for Tigrinya (also referred to as Tigrigna), which is a family of Semitic languages spoken in Eritrea and northern Ethiopia. Tigrinya is a “low-resource” language and is notable in terms of the absence of comprehensive and free data. Furthermore, it is characterized as one of the most semantically and syntactically complex languages in the world, similar to other Semitic languages. To the best of our knowledge, no previous research has been conducted on the state-of-the-art embedding technique that is shown here. We investigate which word representation methods perform better in terms of learning for single-label text classification problems, which are common when dealing with morphologically rich and complex languages. Manually annotated datasets are used here, where one contains 30,000 Tigrinya news texts from various sources with six categories of “sport”, “agriculture”, “politics”, “religion”, “education”, and “health” and one unannotated corpus that contains more than six million words. In this paper, we explore pretrained word embedding architectures using various convolutional neural networks (CNNs) to predict class labels. We construct a CNN with a continuous bag-of-words (CBOW) method, a CNN with a skip-gram method, and CNNs with and without word2vec and FastText to evaluate Tigrinya news articles. We also compare the CNN results with traditional machine learning models and evaluate the results in terms of the accuracy, precision, recall, and F1 scoring techniques. The CBOW CNN with word2vec achieves the best accuracy with 93.41%, significantly improving the accuracy for Tigrinya news classification

    Text Classification Based on Convolutional Neural Networks and Word Embedding for Low-Resource Languages: Tigrinya

    No full text
    This article studies convolutional neural networks for Tigrinya (also referred to as Tigrigna), which is a family of Semitic languages spoken in Eritrea and northern Ethiopia. Tigrinya is a “low-resource” language and is notable in terms of the absence of comprehensive and free data. Furthermore, it is characterized as one of the most semantically and syntactically complex languages in the world, similar to other Semitic languages. To the best of our knowledge, no previous research has been conducted on the state-of-the-art embedding technique that is shown here. We investigate which word representation methods perform better in terms of learning for single-label text classification problems, which are common when dealing with morphologically rich and complex languages. Manually annotated datasets are used here, where one contains 30,000 Tigrinya news texts from various sources with six categories of “sport”, “agriculture”, “politics”, “religion”, “education”, and “health” and one unannotated corpus that contains more than six million words. In this paper, we explore pretrained word embedding architectures using various convolutional neural networks (CNNs) to predict class labels. We construct a CNN with a continuous bag-of-words (CBOW) method, a CNN with a skip-gram method, and CNNs with and without word2vec and FastText to evaluate Tigrinya news articles. We also compare the CNN results with traditional machine learning models and evaluate the results in terms of the accuracy, precision, recall, and F1 scoring techniques. The CBOW CNN with word2vec achieves the best accuracy with 93.41%, significantly improving the accuracy for Tigrinya news classification

    Arabic Aspect-Based Sentiment Classification Using Seq2Seq Dialect Normalization and Transformers

    No full text
    Sentiment analysis is one of the most important fields of natural language processing due to its wide range of applications and the benefits associated with using it. It is defined as identifying the sentiment polarity of natural language text. Researchers have recently focused their attention on Arabic SA due to the massive amounts of user-generated content on social media and e-commerce websites in the Arabic world. Most of the research in this fieldwork is on the sentence and document levels. This study tackles the aspect-level sentiment analysis for the Arabic language, which is a less studied version of SA. Because Arabic NLP is challenging and there are few available Arabic resources and many Arabic dialects, limited studies have attempted to detect aspect-based sentiment analyses on Arabic texts. Specifically, this study considers two ABSA tasks: aspect term polarity and aspect category polarity, using the text normalization of the Arabic dialect after making the classification task. We present a Seq2Seq model for dialect normalization that can serve as a pre-processing step for the ABSA classification task by reducing the number of OOV words. Thus, the model’s accuracy increased. The results of the conducted experiments show that our models outperformed the existing models in the literature on both tasks and datasets

    The Applications of Metaheuristics for Human Activity Recognition and Fall Detection Using Wearable Sensors: A Comprehensive Analysis

    No full text
    In this paper, we study the applications of metaheuristics (MH) optimization algorithms in human activity recognition (HAR) and fall detection based on sensor data. It is known that MH algorithms have been utilized in complex engineering and optimization problems, including feature selection (FS). Thus, in this regard, this paper used nine MH algorithms as FS methods to boost the classification accuracy of the HAR and fall detection applications. The applied MH were the Aquila optimizer (AO), arithmetic optimization algorithm (AOA), marine predators algorithm (MPA), artificial bee colony (ABC) algorithm, genetic algorithm (GA), slime mold algorithm (SMA), grey wolf optimizer (GWO), whale optimization algorithm (WOA), and particle swarm optimization algorithm (PSO). First, we applied efficient prepossessing and segmentation methods to reveal the motion patterns and reduce the time complexities. Second, we developed a light feature extraction technique using advanced deep learning approaches. The developed model was ResRNN and was composed of several building blocks from deep learning networks including convolution neural networks (CNN), residual networks, and bidirectional recurrent neural networks (BiRNN). Third, we applied the mentioned MH algorithms to select the optimal features and boost classification accuracy. Finally, the support vector machine and random forest classifiers were employed to classify each activity in the case of multi-classification and to detect fall and non-fall actions in the case of binary classification. We used seven different and complex datasets for the multi-classification case: the PAMMP2, Sis-Fall, UniMiB SHAR, OPPORTUNITY, WISDM, UCI-HAR, and KU-HAR datasets. In addition, we used the Sis-Fall dataset for the binary classification (fall detection). We compared the results of the nine MH optimization methods using different performance indicators. We concluded that MH optimization algorithms had promising performance in HAR and fall detection applications
    corecore