4 research outputs found

    A Closer Look at Precision Hard Turning of AISI4340: Multi-Objective Optimization for Simultaneous Low Surface Roughness and High Productivity

    Get PDF
    This article reports an extended investigation into the precision hard turning of AISI 4340 alloy steel when machined by two different types of inserts: wiper nose and conventional round nose. It provides a closer look at previously published work and aims at determining the optimal process parameters for simultaneously minimizing surface roughness and maximizing productivity. In the mathematical models developed by the authors, surface roughness at different cutting speeds, depths of cut and feed rates is treated as the objective function. Three robust multi-objective techniques, (1) multi-objective genetic algorithm (MOGA), (2) multi-objective Pareto search algorithm (MOPSA) and (3) multi-objective emperor penguin colony algorithm (MOEPCA), were used to determine the optimal turning parameters when either the wiper or the conventional insert is used, and the results were experimentally validated. To investigate the practicality of the optimization algorithms, two turning scenarios were used. These were the machining of the combustion chamber of a gun barrel, first with an average roughness (Ra) of 0.4 µm and then with 0.8 µm, under conditions of high productivity. In terms of the simultaneous achievement of both high surface quality and productivity in precision hard turning of AISI 4340 alloy steel, this work illustrates that MOPSA provides the best optimal solution for the wiper insert case, and MOEPCA results are the best for the conventional insert. Furthermore, the results extracted from Pareto front plots show that the wiper insert is capable of successfully meeting both the requirements of Ra values of 0.4 µm and 0.8 µm and high productivity. However, the conventional insert could not meet the 0.4 µm Ra requirement; the recorded global minimum was Ra = 0.454 µm, which reveals the superiority of the wiper compared to the conventional insert

    A Closer Look at Precision Hard Turning of AISI4340: Multi-Objective Optimization for Simultaneous Low Surface Roughness and High Productivity

    No full text
    This article reports an extended investigation into the precision hard turning of AISI 4340 alloy steel when machined by two different types of inserts: wiper nose and conventional round nose. It provides a closer look at previously published work and aims at determining the optimal process parameters for simultaneously minimizing surface roughness and maximizing productivity. In the mathematical models developed by the authors, surface roughness at different cutting speeds, depths of cut and feed rates is treated as the objective function. Three robust multi-objective techniques, (1) multi-objective genetic algorithm (MOGA), (2) multi-objective Pareto search algorithm (MOPSA) and (3) multi-objective emperor penguin colony algorithm (MOEPCA), were used to determine the optimal turning parameters when either the wiper or the conventional insert is used, and the results were experimentally validated. To investigate the practicality of the optimization algorithms, two turning scenarios were used. These were the machining of the combustion chamber of a gun barrel, first with an average roughness (Ra) of 0.4 µm and then with 0.8 µm, under conditions of high productivity. In terms of the simultaneous achievement of both high surface quality and productivity in precision hard turning of AISI 4340 alloy steel, this work illustrates that MOPSA provides the best optimal solution for the wiper insert case, and MOEPCA results are the best for the conventional insert. Furthermore, the results extracted from Pareto front plots show that the wiper insert is capable of successfully meeting both the requirements of Ra values of 0.4 µm and 0.8 µm and high productivity. However, the conventional insert could not meet the 0.4 µm Ra requirement; the recorded global minimum was Ra = 0.454 µm, which reveals the superiority of the wiper compared to the conventional insert

    Multi-Objective Optimization of Performance Indicators in Turning of AISI 1045 under Dry Cutting Conditions

    Get PDF
    In machining operations, minimizing the usage of resources such as energy, tools, costs, and production time, while maximizing process outputs such as surface quality and productivity, has a significant impact on the environment, process sustainability, and profit. In this context, this paper reports on the utilization of advanced multi-objective algorithms for the optimization of turning-process parameters, mainly cutting speed, feed rate, and depth of cut, in the dry machining of AISI 1045 steel for high-efficient process. Firstly, a number of experimental tests were conducted in which cutting forces and cutting temperatures are measured. Then the material removal rate and the obtainable surface roughness were determined for the examined range of cutting parameters. Next, regression models were developed to formulate the relationships between the process parameters and the four process responses. After that, four different multi-objective optimization algorithms, (1) Gray Wolf Optimizer (GWO) and (2) Weighted Value Gray Wolf Optimizer (WVGWO), (3) Multi-Objective Genetic Algorithm (MOGA), and (4) Multi-Objective Pareto Search Algorithm (MOPSA), were applied. The results reveal that the optimal running conditions of the turning process of AISI 1045 steel obtained by WVGWO are a feed rate of 0.050 mm/rev, cutting speed of 156.5 m/min, and depth of cut of 0.57 mm. These conditions produce a high level of material removal rate of 4460.25 mm3/min, in addition to satisfying the surface quality with a roughness average of 0.719 µm. The optimal running conditions were found to be dependent on the objective outcomes’ order. Moreover, a comparative evaluation of the obtainable dimensional accuracy in both dry and wet turning operations was carried out, revealing a minimal relative error of 0.053% maximum between the two turning conditions. The results of this research work assist in obtaining precise, optimal, and cost-effective machining solutions, which can deliver a high-throughput, controllable, and robust manufacturing process when turning AISI 1045 steel
    corecore