5 research outputs found

    Impaired spatio-temporal predictive motor timing associated with spinocerebellar ataxia type 6

    Get PDF
    Many daily life activities demand precise integration of spatial and temporal information of sensory inputs followed by appropriate motor actions. This type of integration is carried out in part by the cerebellum, which has been postulated to play a central role in learning and timing of movements. Cerebellar damage due to atrophy or lesions may compromise forward- model processing, in which both spatial and temporal cues are used to achieve prediction for future motor states. In the present study we sought to further investigate the cerebellar contribution to predictive and reactive motor timing, as well as to learning of sequential order and temporal intervals in these tasks. We tested patients with spinocerebellar ataxia type 6 (SCA6) and healthy controls for two related motor tasks; one requiring spatio-temporal prediction of dynamic visual stimuli and another one requiring reactive timing only. We found that healthy controls established spatio-temporal prediction in their responses with high temporal precision, which was absent in the cerebellar patients. SCA6 patients showed lower predictive motor timing, coinciding with a reduced number of correct responses during the 'anticipatory' period on the task. Moreover, on the task utilizing reactive motor timing functions, control participants showed both sequence order and temporal interval learning, whereas patients only showed sequence order learning. These results suggest that SCA6 affects predictive motor timing and temporal interval learning. Our results support and highlight cerebellar contribution to timing and argue for cerebellar engagement during spatio-temporal prediction of upcoming events

    Changes in brain activity following the voluntary control of empathy

    Get PDF
    In neuroscience, empathy is often conceived as relatively automatic. The voluntary control that people can exert on brain mechanisms that map the emotions of others onto our own emotions has received comparatively less attention. Here, we therefore measured brain activity while participants watched emotional Hollywood movies under two different instructions: to rate the main characters' emotions by empathizing with them, or to do so while keeping a detached perspective. We found that participants yielded highly consistent and similar ratings of emotions under both conditions. Using intersubject correlation-based analyses we found that, when encouraged to empathize, participants' brain activity in limbic (including cingulate and putamen) and somatomotor regions (including premotor, SI and SII) synchronized more during the movie than when encouraged to detach. Using intersubject functional connectivity we found that comparing the empathic and detached perspectives revealed widespread increases in functional connectivity between large scale networks. Our findings contribute to the increasing awareness that we have voluntary control over the neural mechanisms through which we process the emotions of others

    Action perception recruits the cerebellum and is impaired in patients with spinocerebellar ataxia

    Get PDF
    Our cerebellum has been proposed to generate prediction signals that may help us plan and execute our motor programmes. However, to what extent our cerebellum is also actively involved in perceiving the action of others remains to be elucidated. Using functional MRI, we show here that observing goal-directed hand actions of others bilaterally recruits lobules VI, VIIb and VIIIa in the cerebellar hemispheres. Moreover, whereas healthy subjects (n = 31) were found to be able to discriminate subtle differences in the kinematics of observed limb movements of others, patients suffering from spinocerebellar ataxia type 6 (SCA6; n = 21) were severely impaired in performing such tasks. Our data suggest that the human cerebellum is actively involved in perceiving the kinematics of the hand actions of others and that SCA6 patients' deficits include a difficulty in perceiving the actions of other individuals. This finding alerts us to the fact that cerebellar disorders can alter social cognition
    corecore