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A B S T R A C T

In neuroscience, empathy is often conceived as relatively automatic. The voluntary control that people can exert
on brain mechanisms that map the emotions of others onto our own emotions has received comparatively less
attention. Here, we therefore measured brain activity while participants watched emotional Hollywood movies
under two different instructions: to rate the main characters’ emotions by empathizing with them, or to do so
while keeping a detached perspective. We found that participants yielded highly consistent and similar ratings of
emotions under both conditions. Using intersubject correlation-based analyses we found that, when encouraged to
empathize, participants’ brain activity in limbic (including cingulate and putamen) and somatomotor regions
(including premotor, SI and SII) synchronized more during the movie than when encouraged to detach. Using
intersubject functional connectivity we found that comparing the empathic and detached perspectives revealed
widespread increases in functional connectivity between large scale networks. Our findings contribute to the
increasing awareness that we have voluntary control over the neural mechanisms through which we process the
emotions of others.
1. Introduction

It is well established that observing another person experiencing
emotions triggers representations in brain regions associated with our
own actions, sensations, and emotions (Engen and Singer, 2013; Keysers
et al., 2010; Keysers and Gazzola, 2009; Lamm et al., 2011). The
recruitment of neural representations tied to our own body (in somato-
sensory and motor regions) and to our own affect (in limbic regions such
as the cingulate, insula, striatum, and amygdala) is conceived as an
embodied process. This process is associated with the concept of
empathy, i.e. experiencing what other people feel while being aware that
this vicarious state is produced by someone else (Keysers and Gazzola,
2009; Lamm et al., 2011). This phenomenon can be studied using block
designs in which participants either view or experience certain emotions,
such as pleasure, disgust, or pain (Jabbi et al., 2007; Keysers et al., 2004;
Singer et al., 2004; Wicker et al., 2003). An interesting alternative is to
show longer movies that include a variety of emotions, and to identify
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those voxels in which activity is synchronized across viewers of the same
stimuli (Hasson et al., 2004, 2010; Nummenmaa et al., 2012; Nastase
et al., 2019). This approach leverages the fact that for a voxel to syn-
chronize across viewers of the same movie, its activity fluctuations must
carry information about the movie, allowing us to map how much in-
formation each voxel in the brain has about the content of the movie
while using complex stimuli that situate human interactions in context
(Nastase et al., 2019).

In addition to embodied processes, ample evidence shows that par-
ticipants can infer the cognitive mental states of others in more abstract
ways using brain regions that include the temporoparietal junction (TPJ),
the precuneus, and the medial prefrontal cortex (mPFC; Mar, 2011; Frith
and Frith, 2008; Schurz et al., 2014). This process, often called mental-
izing (Frith and Frith, 2008) or cognitive empathy (Preston and De Waal,
2002), is typically studied in the context of attributing false beliefs to
other individuals (Saxe and Kanwisher, 2003), but it also seems to be
involved while we process the emotions of others (Schnell et al., 2011).
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Hence, there seem to be two complementary pathways to perceiving
what goes on in others: a cognitive pathway involved in mentalizing, and
an embodied pathway often associated with empathy (Keysers and
Gazzola, 2007; Schnell et al., 2011).

While mentalizing is typically considered to be relatively voluntary,
embodied processes through which witnessing the emotions of others
triggers our own emotions are typically regarded as automatic, albeit
occurring to varying extent depending on individual differences in trait
empathy (e.g. Jabbi et al., 2007; Singer et al., 2004), psychopathology
(e.g. Bird et al., 2010; Meffert et al., 2013), or context (e.g. Azevedo et al.,
2013; Hein et al., 2010; Singer et al., 2006). Thus, the voluntary control
of the embodied processes have been overlooked, with the exception of
three notable studies. Lahnakoski et al. (2014) showed that while
watching a soap opera people could voluntarily change their perspective
from that of a detective, (i.e. paying attention to people), to that of an
interior decorator (i.e. paying attention to objects), and that this
perspective switch led to measurable changes in how parietal and visual
cortices represented the clip. Bruneau et al. (2013) showed that actively
trying to empathize with another’s emotional pain led to increases in
amygdala activity. Meffert et al. (2013) showed that instructions to
empathize boosted activity in the insula and the anterior cingulate cortex
while witnessing other people in pain.

In contrast to this limited number of neuroscience studies, the psy-
chology literature has provided ample evidence that, besides self-
regulation of emotions (Gu and Han, 2007; Lamm et al., 2010); Hallam
et al., 2014), people are highly selective in the voluntary control of af-
fective empathy, boosting it when they expect empathy to benefit them,
and reducing it when they expect it to be detrimental (see Weisz and
Zaki, 2018; Zaki, 2014; Schumann et al., 2014 for reviews, and Cameron
et al., 2016; Cikara et al., 2014; Morelli et al., 2015; Pickett et al., 2004;
Shaw et al., 1994 as examples of studies using this approach). We would
thus expect to find a strong voluntary modulation of brain activity in
networks mapping the actions and emotions of others onto our own
(Keysers and Gazzola, 2014), akin to the well documented deliberate
neural modulations of our own emotions (for a review see Kohn et al.,
2014).

The aim of the current experiment was thus to investigate whether
and where in the brain we can voluntarily modulate the route through
which we attribute emotions to others. For this aim, we asked partici-
pants, in an MRI scanner, to watch extracts from Hollywood movies in
which the main character undergoes strong emotional fluctuations, and
to simultaneously rate the emotional state of the main protagonist from
moment to moment. To localize the neural correlates of this voluntary
control, people performed the emotion rating task under two different
instructions. During the Empathic session, participants were required to
watch the videos with specific instructions to actively empathize with
and share the feelings of the main character while rating them. During
the Detached session, participants watched the videos with specific in-
structions to be as detached as possible from the main character in the
film, and to try not to share his feelings. In both conditions participants
therefore had to continuously rate and perceive the affective state of the
main character but while in one case they could let these emotions
permeate their own state, in the other, they could have used more
cognitive routes without being affected themselves. Based on the dif-
ferentiation of cognitive and affective empathy we would expect the
Empathic manipulation to increase the degree to which brain regions
associated with embodied processing synchronize across participants,
and hence represent the movie (Nastase et al., 2019) and the Detached
instruction to increase synchrony in regions associated with mentalizing.

Having to provide an explicit moment to moment report of other
people’s emotions undoubtedly influences brain activity relative to a
more natural situation in which we react to the emotions of others more
implicitly. However, we chose this task to ensure that participants pro-
cess the emotions of the main character under both conditions, and that
we can quantify the accuracy of this processing across conditions using
these ratings. Otherwise, differences between the empathic and detached
2

condition could simply reflect differences between attending and not
attending to the emotions of the protagonist (as in Lahnakoski et al.,
2014). Given the important distinction between taking a first versus third
person perspective (Decety and Meyer, 2008; Reniers et al., 2014), we
also explicitly instruct participants in both conditions to rate how the
protagonist is feeling (Schnell et al., 2011), not how the participants
themselves feel.

After exploring whether instructions alter how participants rate the
emotions of the protagonists, we first use intersubject correlation (ISC;
Nastase et al., 2019) to examine which voxels are influenced by the
change in instructions. Second, we explore intersubject functional con-
nectivity (ISFC; Nastase et al., 2019) to examine whether instructions
reshaped the functional connectivity across the brain networks that
process the movie.

2. Methods

2.1. Participants

Twenty-three healthy, right-handed, native English speaking males
were recruited from the city of Amsterdam, the Netherlands. Individuals
with a history of neurological/psychiatric symptoms or medication usage
were excluded from participation. One participant was excluded due to
potentially abnormal brain anatomy and their data referred to a
neurologist for further examination, and three more participants were
excluded due to incomplete data acquisition. An additional participation
criterion was being naive to the stimulus material (see section 2.3).
Nineteen participants were included in the final sample (mean age ¼
33.2 years � 10.9 SD). All subjects were compensated for their time and
travel costs, and gave their informed consent. The study was approved by
the Ethics Review Board Committee of the University of Amsterdam
under the protocol NL45843.018.

2.2. Experimental task

Participants underwent three fMRI sessions on different days in which
participants watched the same two movie clips under three task in-
structions. Only one instruction was given within one session, and the
order of instruction was randomized between participants. Participants
were informed about the three viewing instructions at the beginning of
the experiment (see Online Supplementary Material 1), and reminded at
the beginning of each scanning session before the movie presentation.

During the Empathic session, participants were required to watch the
videos under the following instructions: “we ask that you try to empa-
thize with the target character while making the ratings. By this we mean
for you to try to be compassionate, caring and warm towards the char-
acter, perhaps even sharing what they are feeling.” This instruction was
repeated on the screen just before the movie presentation in the
following way: ‘‘Watch the following video and rate the emotions of the
character whilst being empathic, try to be compassionate, caring, warm
and compassionate’‘.

During the Detached session, participants watched the videos under
the following reminder instructions: “During one viewingwe ask that you
try to be as detached from the target character as possible. During this
viewing try not to feel with the character, but rate their emotions from a
detached, dispassionate and objective point of view.” Just before the
beginning of the movie, participants were reminded of the instruction
with the text: “Please watch the following video and rate the emotions of
the character whilst being detached, objective and dispassionate".

During the Own session, participants had to rate their own emotional
response to the movie: “During this viewing, we ask that you rate how
you are feeling at each moment in time without paying specific attention
to a target in the film. Indeed, pay attention to your own emotions during
this viewing and how the movie makes you feel. Try to be as honest as
you can and remember that the data is anonymised, so we will not be able
to share information about you with anyone else.” Before the beginning
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of the movie their reminder read: “Please watch the following video and
rate your own emotions as positive or negative throughout the clip”.

During the movie presentation, participants had to rate the main
characters’ emotions (in the Detached and Empathic conditions) or their
own (in the Own condition) moment by moment, using a continuous
visual analogue scale displayed below the movie with a cursor moved by
an fMRI compatible trackball (HHSC-TRK-2, Philadelphia, PA, Current
Designs, www.curdes.com). Visually, the scale ranged from ‘very nega-
tive’ to ‘very positive’, corresponding to a continuous trackball x-coor-
dinate scale coded from �500 to 500, respectively. To minimize the
influence that the clip content could have on the modulation process at
the brain and behavioural level, the order of the sessions was randomized
between participants, and the clip presentation order counterbalanced
across sessions.

As we unfortunately did not include the same instruction manipula-
tion in the self-rating condition (i.e. to rate how the participant feels
while being empathic with the protagonist vs. while being detached), and
because we did not direct participants’ attention to the protagonist in the
movie, it is impossible to know how participants positioned themselves
relative to the protagonist while rating their own emotions. The direct
comparison of our two main conditions reporting how the protagonists
feel vs. the self-rating condition cannot therefore speak to the Empathic/
Detached distinction at the core of this manuscript. Additionally, as the
emotions felt by participants are likely induced by the movie, this con-
dition cannot be considered as a clean map of the participant’s self-
experience of emotions. This condition is therefore not discussed
further in this paper. The presence of the Own condition though helped
participants to understand that, by contrast, during the Empathic and
Detached instruction, they had to focus on the emotions of the main
character, rather than their own.

Finally, at the end of the experiment, empathy trait measures
(Interpersonal Reactivity Index scores, IRI; Davis, 1980) were also
collected for 17 out of the 19 participants. The power to detect significant
IRI-ISC correlations is unfortunately very low and running such corre-
lations would lead to inflated estimates and difficult to replicate results
(Cremers et al., 2017). Accordingly, we used the IRI only for some
exploratory analyses that are reported as Figs. S1–S3 and Table S1.

2.3. Stimuli

Naturalistic stimuli are known to be more robust in eliciting
emotional responses (Westermann et al., 1996). We have therefore used
Hollywood movies to present a naturalistic scenario that portrays the
complexity of affective human interactions (see Raz et al., 2012; Raz and
Hendler, 2014; Raz et al., 2016; Vanderwal et al., 2015; Dayan et al.,
2018; Nanni et al., 2018 as examples of studies), and thus promote
empathic feelings and measurable brain responses (i.e. Hasson et al.,
2010; Hasson et al., 2012). As we were interested in modulatory pro-
cesses that are independent from a specific context or emotion, we
decided to present two, rather than one, movie clips extracted from
popular dramatic movies that are known to depict and elicit positive and
negative emotions. Stimuli clips were extracted from ‘The Champ’ (Lovell,
1979), a drama film reported to induce, amongst others, deep sadness in
viewers (Gross and Levenson, 1995; duration 11 min. 46 sec.), which has
been used in a number of other studies (Gross and Levenson, 1995;
Goldin et al., 2005; Hutcherson et al., 2005; Britton et al., 2006), and
from ‘A Perfect World’ (Johnson, 1993; duration 11 min and 30 s). ‘A
Perfect World’ was selected from a database of emotion-eliciting film
clips from the Universit�e Catholique de Louvain (Schaefer et al., 2010)
composed of 64 clips of frequently mentioned scenes ranked on several
affective dimensions. For both movies, we selected clips that contained
moments of happiness and moments of negative affect to ensure that our
time-series would contain significant variance in affect. The segments
extracted from ‘A Perfect World’ contained both positive and negative
emotions (ranked 48th and 54th percentile in the database, respectively),
and scored highly on arousal (92nd percentile). For the Champ, we had
3

no such validated ratings of each segment, but we included segments of
similarly intense positive and negative affect. Both clips were expected to
induce synchronization of emotional brain regions across participants
because of their high arousal and clearly discernible sequence of positive
and negative emotions they elicit in viewers. The video clips were pre-
sented in a counterbalanced order using Presentation software (Version
18.0, Neurobehavioral Systems, Inc., Berkeley, CA, www.neurobs.com)
running on a Windows platform. They were front-projected via an LCD
projector onto a screen placed at the back of the scanner bed, observable
to participants via a mirror mounted within the head coil. The soundtrack
was audible via an fMRI compatible headphone set.

2.4. Behavioural data processing

Ratings were acquired at 50 Hz, and downsampled at 0.5Hz by
averaging the coordinates within each 2s time bin, to match the temporal
resolution of the fMRI data.

For each participant and video clip separately, we first computed
simple correlation values between the ratings under each instruction - i.e.
r(rating DetachedSiClip1, rating EmpathicSiClip1) and r(rating Detach-
edSiClip2, rating EmpathicSiClip2). As our interest was to investigate the
effects of our task instruction independently of a specific video, rather
than differences between video clips, the correlation values were then z-
transformed and averaged across video clips to test the significance of the
correlation over zero with simple T-tests. To identify differences across
instructions, we also calculated the mean rating (over time and video
clip), the mean absolute value of the rating and its standard deviation
(over time), and these values were compared between instructions using
paired T-Tests, after verification of normality (all Shapiro tests for
normality had p > 0.05).

To quantify how consistent the ratings were across participants, we
then ran a pair-wise Inter-Subject Correlation (ISC) (i.e. r(ratingSi, rat-
ingSj 6¼i), with S ¼ subject i to j) for each video clip and task instruction,
separately. The correlation values were then z-transformed and again
averaged over video clips to obtain a cross-correlation matrix per task
instruction. Because the consistency (r-value) was similarly high under
both instructions, we then asked ourselves how similar the actual ratings
were across conditions. To do so, we plotted the average ratings for each
condition (Fig. 1A), and calculated additional pairwise ISC values across
instruction, i.e. by correlating the individual ratings during the Detached
instruction with other individuals’ rating during the Empathic instruc-
tion, and vice versa, by correlating the individual ratings during the
Empathic instruction with those during the Detached instruction. Once
again, the correlation values from the two video clips were z-transformed
before averaging them. To assess the significance we perform a non-
parametric test on the pairwise behavioral ISC. We do this with a boot-
strap procedure, as especially recommended for this type of data (Chen
et al., 2016). This procedure provides us with a p-value and with a
confidence interval for the chosen statistical estimator, which is the
median ISC.

2.5. MRI data acquisition

Two functional and one structural MR scans were acquired per session
at the Spinoza Center at the University of Amsterdam, using a 3-T Philips
Achieva 3.0 scanner equipped with a 32-channel head-coil for approxi-
mately 45 min total, with short pauses in between acquisitions in which
participants could relax while laying still inside the scanner. Subjects
were provided with a microphone and headphones to maintain
communication throughout the scanning sessions. Head cushions inside
the coil were positioned around the subjects’ head to minimize motion.

In each scan session, an anatomical scan was acquired using T1-
weighted images (220 slices; TR ¼ 8.2 ms; TE ¼ 3.8 ms; inversion time
670.4 ms; FOV ¼ 240 � 188 mm2, matrix size ¼ 240 � 240; flip angle ¼
8�; voxel size ¼ 1 mm3). Whole-brain functional T2*-weight MRI data
were acquired using a single-shot, ascending, gradient echo, echo planar,

http://www.curdes.com
http://www.neurobs.com


Fig. 1. Behavioral results. (A) Average rating (�sem, in bold and light lines, respectively) across participants as a function of time, separately for the two video clips.
The x-axis is in volumes of MRI acquisition and each volume corresponds to 2 s, emotional valence ratings are expressed in the �500 to 500 range of the visual
analogue scale. (B) Violin plots of the absolute value of the ratings across participants as a measure of the rating excursion. Each dot represents the average absolute
value for one participant. (C) Pairwise ISC r-values across conditions. Each cell indicates the median r-values and the 95% confidence interval. The values on the
diagonal represent the r-values within a condition, while the values off diagonal represent the ISC across conditions. (D) Percentage of volumes with frame-wise head
displacements over 0.5 mm for each participant (S01–S19) and task instruction. (E) Violin plot of the pairwise correlations of the frame-wise head displacements for
the Detached and Empathic instruction. The dots are the r values of all computed pairwise correlations (19x19), the black violin contours are the distributions of the
boot-strap procedure used to calculate the significance of the observed average correlations. Data can be found at https://www.dropbox.com/s/7y23h6adljnvdnq/Rat
ings_%26_FrameWiseHeadDisplacements.xlsx?dl¼0.
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imaging sequence (voxel size ¼ 3 mm3; TR ¼ 2000 ms, TE ¼ 29.93 ms;
flip angle ¼ 76.1�; FOV ¼ 240 mm2). Thirty-seven, 3-mm thick, trans-
verse slices, with a 0.3 mm gap per run were acquired, allowing a full
brain coverage in all subjects. Three-hundred and seventy volumes were
collected per clip, resulting in 740 vol per session. Ten seconds of
gradient RF pulses preceded the acquisition of each of the experimental
runs to establish steady-state tissue magnetization, these images were
automatically discarded from the raw data and were not included in any
of the analysis.

2.6. MRI data preprocessing

Brain images were reconstructed from k-space and par/rec format
files were converted to nifti format and subsequently preprocessed in
SPM12 software (Wellcome Trust Centre for Neuroimaging, University
College London, UK http://www.fil.ion.ucl.ac.uk/spm/) run with Matlab
R14b (www.mathworks.com) on a Windows platform. The first five
functional images of each run, corresponding to the instructions slides,
were removed to include only those volumes where participants were
observing and rating the clips, resulting in 361 and 344 vol for ‘The
Champ’ and ‘A Perfect World’, respectively. Firstly, to adjust between-
slice time differences, functional images were phase-shifted using the
slice-time correction utility in SPM to the timing of the middle slice of
each volume using a sinc interpolation method, and then spatially real-
igned to the first image acquired using an iterative rigid body trans-
formation and a least square approach to correct for movement artefacts.
Realignment parameters were used to (i) calculate the percentage of
4

framewise displacement (FD) above 0.5 mm (Fig. 1D) for each partici-
pant and condition, and (ii) compute a pairwise ISC of the FD time series
to explore whether head movements were synchronized across subjects
(Fig. 1E). As significant correlations were identified by bootstrapping
with 1000 possible permutations, we then regressed out the FD in the ISC
and ISFC analyses (see below). The anatomical image was then co-
registered to the mean EPI and segmented. The forward normalization
parameters estimated during segmentation were saved and applied to
both the anatomical and functional images for the spatial normalization
to the T1-weighted Montreal Neurological Image space (MNI template).
Functional and anatomical images were resampled into (2 mm)3 and 1
mm3 voxels respectively, and the default settings of SPM12’s bounding
box were adjusted [-90 -126 -72; 90 90 108] in order to avoid omission of
cerebellar voxels (Gazzola and Keysers, 2009; Abdelgabar et al., 2018). A
6 mm full-width at half maximum (FWHM) Gaussian kernel was applied
to the functional images to reduce inter subject anatomical variability.

2.7. fMRI intersubject correlation (ISC)

We compute pairwise ISC within and across instruction (Empathic
and Detached), and test statistical significance through non-parametric
testing. We do this for the data corresponding to each clip indepen-
dently. Subsequently, we averaged the pairwise correlation matrices of
the two clips as a way to filter out clip-specific information. For each
voxel and combination of instruction (e.g. Empathic, Empathic), we
therefore have a Nsub x Nsub matrix ISC(Empathic, Empathic), containing
the correlations of the timecourses measured at that voxel for each pair of
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subject (Si, Sj). As an estimator for the correlation at each voxel and
between instruction we compute the median of the upper triangular part
of this symmetric matrix and assess its significant through non-
parametric testing. Note that we only focus on ISCs and exclude the di-
agonal, which is trivial for the within-condition case. The non-parametric
test that we employ is the one suggested in Chen et al. (2016) and pub-
licly available in the ISC module of the brainiak project (https://brainia
k.org/docs/brainiak.html#module-brainiak.isc). Specifically, we use the
bootstrap_isc method. This method generates a bootstrap distribution for
the median r value of the correlation matrix M(emp, det) by randomly
replacing the rows and columns corresponding to one or more subjects,
with those of other subjects. This operation can then be repeated an
adequately large number of times to generate a distribution of values that
represents the variations of the original r and allows the estimation of a
p-value. For more details please refer to the official documentation at htt
ps://brainiak.org/docs/brainiak.html#module-brainiak.isc.bootstra
p_isc. In our case, we performed N ¼ 1000 bootstrap. This gives us a
median r-value per voxel, each with its corresponding p-value. We repeat
all of this for the four possible cases in which we evaluate the significance
of the ISC in one pair of instructions against the null hypothesis (Fig. 2),
combining the information corresponding to the two clips as described
above. Then, we perform the same operation for the contrasts between
Fig. 2. Pairwise ISC of brain activity. Spatial representation of the synchronization
and Detached instructions. Activations are rendered with the plot_surf package of ni
ml), sampling the data on a cortical mesh from the standard nilearn datasets (inflated
surf_fsaverage.html#nilearn.datasets.fetch_surf_fsaverage). Only voxels surviving a bo
are available at this link https://identifiers.org/neurovault.collection:6079.

5

different instructions (Fig. 3), where we combine the correlationmatrices
corresponding to different clips and instruction, weighting them with a
þ- sign, according to the desired contrast. For example, in the case of
Empathic > Detached we have:

r(Emp > Det) ¼ 1/4[r(clip1; Emp,Emp)þr(clip2; Emp,Emp)-r(clip1;
Det,Det)-r(clip2; Det,Det)]

To take into account the significant ISC found for head movements
(i.e. FD), we performed the ISC calculation excluding possible additional
correlations caused by such movements. We did this by fitting a general
linear model for the BOLD response as a function of FD, implementing the
fit for FD(t), FD(t-1), FD(tþ1), and their squared values. We then retained
the residuals of this fit as the “true” signal, to correlate across every
possible pair of subjects and instruction for our ISC study. Including this
extra step in the ISC analysis reassuringly does not lead to significant
differences neither in the ISC corresponding to a single pair of subjects,
nor in the groupwise analysis presented in Figs. 2 and 3.

2.8. fMRI intersubject functional connectivity (ISFC)

To explore whether the instruction to deliberately empathize or
detach from the main character’s feelings temporally synchronized the
connectivity of networks across participants, we implemented an
of BOLD activity (in terms of intersubject pair-wise correlation) for the Empathic
learn (https://nilearn.github.io/modules/generated/nilearn.plotting.plot_surf.ht
brain from https://nilearn.github.io/modules/generated/nilearn.datasets.fetch_
otstrap non-parametric test at q < 0.01 FDR corrected are shown. All data shown

https://brainiak.org/docs/brainiak.html%23module-brainiak.isc
https://brainiak.org/docs/brainiak.html%23module-brainiak.isc
https://brainiak.org/docs/brainiak.html#module-brainiak.isc.bootstrap_isc
https://brainiak.org/docs/brainiak.html#module-brainiak.isc.bootstrap_isc
https://brainiak.org/docs/brainiak.html#module-brainiak.isc.bootstrap_isc
https://nilearn.github.io/modules/generated/nilearn.plotting.plot_surf.html
https://nilearn.github.io/modules/generated/nilearn.plotting.plot_surf.html
https://nilearn.github.io/modules/generated/nilearn.datasets.fetch_surf_fsaverage.html%23nilearn.datasets.fetch_surf_fsaverage
https://nilearn.github.io/modules/generated/nilearn.datasets.fetch_surf_fsaverage.html%23nilearn.datasets.fetch_surf_fsaverage
https://identifiers.org/neurovault.collection:6079


K.C. Borja Jimenez et al. NeuroImage 216 (2020) 116529
adaptation of the ISFC analysis (Simony et al., 2016). The ISFC explores
how information about stimuli (Nastase et al., 2019) is exchanged across
brain networks by exploring the temporal correlation between the time
course of a network in one participant, and the time course of another
participant in a different network. Doing this analysis across participants
ensures that correlations are not due to confounds within a particular
brain (e.g. heart beat, respiration, or other intrinsic signals), but can only
originate from information about the movie (Nastase et al., 2019; Simony
et al., 2016). For this, the EPI volumes of each clip and condition were
band-pass filtered (0.1–0.01 Hz) to isolate the temporal variations be-
tween 10 and 100 s which are expected to encode most of the BOLD
signal relevant for cognitive processes (Honey et al., 2012), standardized,
averaged across all participants, to generate one time series per movie
and condition, and then temporally concatenated into a file containing
both clips and conditions. Then, we used an ICA (FSL, Melodic algorithm
from Beckmann and Smith, 2004; Smith et al., 2004) to decompose brain
activity into 20 large scale networks (Fig. 4) that had representations of
the movie that are consistent across participants. The ISFC was computed
across each pair of independent components (ICs) and for every possible
pair of participants. Additionally, we made sure to exclude any possible
spurious correlations caused by head motion artefacts by computing ISFC
as a partial correlation r (ICaSi, ICbSj | FDSi, FDSj), where ICa and ICb are
two possible IC pairs, FDSi and FDSj the head displacement of subject i
and subject j. Note that for FD we include also the same time series
shifted back and forward by one TR, and their squared values, both for
subject i and j, for a total of 12 confound variables. With this procedure,
we compute N_sub^2 connectivity matrices, one for each pair of partic-
ipants, from which we compute an average connectivity map, averaging
across all of these pairs. Again, assessing the significance of the measured
values is a non-trivial problem, given that we are using a pairwise
approach (Chen et al., 2016). Ultimately, we were interested in the dif-
ference in connectivity between the two studied conditions, empathic
and detached. To assess the significance of this difference, we imple-
mented a pairwise permutation test in which, for each subject, we flipped
the Empathic vs Detached label, and then recalculate the entire pairwise
ISFC matrix of correlations between each ICa and ICb, and then compute
the difference in mean pairwise correlation for Empathic-Detached. We
did that 5000 times to get a distribution of random differences in cor-
relation. To deal with the multiple comparison problem across the 190
combinations of two ICs, we then looked for a critical difference in
Fig. 3. Instruction-dependent ISC. (A) Regions where ISC is larger under Empath
tached than under Empathic instructions. Activations are rendered using the nilearn
networks associated with embodied cognition and mentalizing is described in Fig. S4 a
vault.collection:6079.
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r-value, ‘rho’, so that in less than 5% of permutations we have any of the
190 pairs of IC pairs that change their correlation by ‘rho’. At this critical
rho value, FDR is thus 0.05.

2.9. Data and code availability statement

Raw data is available upon direct request to the corresponding
author. The summary statistics that are shown in Figures can be down-
loaded at: https://www.dropbox.com/sh/y609y0a484m1nr
1/AADLCYurIbk-Kko81KwpwIR4a?dl¼0.

The data and code sharing adopted by the authors comply with the
requirements of our funding bodies, the Netherlands Institute of Neuro-
science, and comply with the Ethics Review Board Committee of the
University of Amsterdam.

3. Results

3.1. Behaviour

To explore the impact of instructions on the participant ratings of the
main character’s feelings, we firstly calculated a simple correlation be-
tween the Empathic and the Detached ratings at the participant level,
averaging over the two video clips. The average correlation was high
(mean r ¼ 0.85, SD ¼ 0.02). A T-test confirmed that the correlation
strongly differed from zero (t18 ¼ 21.33, p < 0.001). Visually inspecting
the average rating under the Detached and the Empathic instructions
(blue and red curves, Fig. 1A) illustrates how much the two curves go up-
and-down together. However, the Detached curve appears to be flatter
than the Empathic curve. To capture this difference in excursion, we
explored whether there were differences in the mean rating, and in the
excursion of the rating. The mean ratings between conditions differed
slightly (mean rating Detached ¼ �112.49 � 60.02 SD; Empathic ¼
�133.63 � 47.26 SD; t18 ¼ 2.1, p ¼ 0.046). The excursion differed more
substantially, which was evident when quantifying the mean absolute
value of the rating (Fig. 1B; average absolute rating Detached ¼ 167.7 �
63.8 SD, Empathic ¼ 212.2 � 52.12 SD; t18 ¼ �4.15, p < 0.001), which
captures how far from the neutral state participant rated the character on
average (independently of direction). This was also evident when
comparing the standard deviation over time of the ratings of each
participant (average standard deviation Detached ¼ 158.8 � 50.04 SD,
ic than under Detached instructions. (B) Regions where ISC is larger under De-
library, as for Fig. 2. The similarity between the contrast maps and functional
nd Fig. S5. All data shown are available at this link https://identifiers.org/neuro

https://www.dropbox.com/sh/y609y0a484m1nr1/AADLCYurIbk-Kko81KwpwIR4a?dl=0
https://www.dropbox.com/sh/y609y0a484m1nr1/AADLCYurIbk-Kko81KwpwIR4a?dl=0
https://www.dropbox.com/sh/y609y0a484m1nr1/AADLCYurIbk-Kko81KwpwIR4a?dl=0
https://identifiers.org/neurovault.collection:6079
https://identifiers.org/neurovault.collection:6079


Fig. 4. ICA maps. Glass brain representation of the 20 ICs (Map 0 to Map 19) obtained using Melodic on the average concatenated standardized time courses of the
two video clips under the two instructions. Please note that the numbering of the ICs is the same as in Fig. 5. The similarity between each IC and functional networks
associated with embodied cognition and mentalizing is described in Fig. S4 and Fig. S6. All data shown are available at this link https://identifiers.org/neurovault.co
llection:6079.
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Empathic ¼ 200.8 � 42.25; t18 ¼ �4.23 p < 0.001). Taken together,
these results indicate that although participants capture the emotional
up-and-downs of the protagonist similarly under the two conditions,
under the Empathic condition participants yielded more extreme ratings
7

than they did under the Detached condition.
Fig. 1C shows the results of the pairwise ISC analysis that was ran on

the behavioural data. Results show a high agreement across participants
under both the Detached and Empathic conditions. The ISC(Detached,

https://identifiers.org/neurovault.collection:6079
https://identifiers.org/neurovault.collection:6079
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Detached) values fall within the confidence intervals of the ISC(Em-
pathic, Empathic) and this shows that emotion ratings were not less
reliable under the Detached condition, as would have been expected if
our participants paid less attention to the emotions of the protagonist.
The same is true when restricting the analyses to those participants that
performed under a given instruction in the first session (ISC(Detached,
Detached) ¼ 0.74 [0.63 0.84], ISC(Empathic, Empathic) ¼ 0.70 [0.56
0.86]), showing that the similarity in ISC values is not due to having
already rated the movie under the other instruction beforehand. Because
ratings could be consistent within each instruction, but different across
instructions, we also computed ISC across conditions: ISC(Detached,
Empathic) and ISC(Empathic, Detached). Again, as the confidence in-
terval overlaps we can conclude that across participants the ratings across
conditions were as similar as those within conditions.

Fig. 1D shows the percentage of framewise head displacement present
in our data separately for the two sessions. As the Shapiro-Wilk test for
normality on these percentages was close to significance (p ¼ 0.054), we
used a non parametric Wilcoxon test to compare conditions. The test did
not reveal significant difference across instructions (p ¼ 0.3). A pairwise
ISC on the time-series of framewise displacements revealed that
displacement was weakly but significantly correlated across individuals
in both the Detached and Empathic conditions (Fig. 1E). We therefore
regressed out signals correlated in time with the displacement in all the
following brain analyses (see method section 2.7 and 2.8).

3.2. Emotional stimuli synchronize brain activity

The pairwise ISC that was computed for the Empathic and Detached
instructions show that movies reliably synchronized a broad network of
brain regions that included, but were not limited to, early auditory and
visual regions as well as somatosensory, parietal, premotor, prefrontal,
and limbic cortices (Fig. 2A and B). Fig. 2C and D additionally show the
circuit consistently recruited during cross-condition (i.e. ISC(Detached,
Empathic) or ISC(Empathic, Detached)) is very similar to the within
condition ISC maps (i.e. ISC(Detached, Detached) or ISC(Empathic,
Empathic) confirming that, in line with what we observe in the ratings,
the time course of brain activity is similar across conditions in several
brain regions (for more details on these regions please refer here).

3.3. Instructions change the ISC in the brain

To test if instructions alter the synchronization of brain regions we
compared the ISC values between conditions (Fig. 3). Results confirmed
that instructions altered the brain regions used to encode the movies.
Regions that synchronize more in the Empathic compared to the De-
tached condition include the inferior, middle, and superior frontal gyri,
the premotor cortex, the cingulate cortex, as well as the primary and
secondary somatosensory cortices, the inferior parietal and the right
posterior inferior temporal cortices (Fig. 3A and Inline Supplementary
Table 1 for a more detailed list of activations). Clusters that synchronize
more during the Detached compared to the Empathic condition, include
but are not limited to occipito-temporal, superior parietal, and inferior
frontal regions (Fig. 3B and Inline Supplementary Table 2 for a more
comprehensive list of activations).

3.4. Instructions change the functional connectivity within the brain

To explore whether the instructions changed functional connectivity
across the large scale networks representing the movies, we implemented
an adaptation of intersubject functional connectivity (ISFC; Nastase et al.,
2019; Simony et al., 2016).

We used an ICA to decompose and summarize brain activity into 20
large scale networks (Fig. 4) that have representations of the movie that
are consistent across participants. We manually set the number of ICA to
20 networks, as has often been done for rsFMRI (Smith et al., 2009), to
strike a balance between explaining sufficient variance and generating a
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small but reproducible set of large-scale networks to maintain sensitivity
by limiting the number of comparisons we need to correct for.

Subsequently, we computed the Pearson-correlations between each
pair of the 20 identified ICs components and each pair of participants,
partialling out possible spurious correlations due to FD. We compared
these ISFC values across the two conditions and determined the signifi-
cance of the ISFC variation with a non parametric test based on random
flips of the Empathic vs Detached label (q ¼ 0.05, see methods section
2.8). The ISFC analysis reveals that instructions significantly reconfig-
ured functional connectivity across large scale brain networks (Fig. 5). A
closer examination of the changes shows that in 83% of the significant
changes, the instruction to empathize increases the ISFC across the pair of
ICAs (i.e. |ISFC(Empathic)|>|ISFC(Detached)|). The most frequent
change is a positive ISFC(Detached) becoming even more positive under
the Empathic instruction (warm colors in all the panels A–C of Fig. 5;
53% of all significant changes). Changes in the sign of the ISFC across
conditions were rare (warm colors in Fig. 5A, and cold colors in Fig. 5B or
vice versa; 19% of all changes). Instructions to Empathize thus lead to a
strengthening of functional connectivity across large scale networks
while attributing emotions to others.

4. Discussion

To investigate whether and how participant have voluntary control
over the degree to which they empathize with the emotions of others, we
measured brain activity while participants watched emotional Holly-
wood movies under two different instructions: to rate the main charac-
ters’ emotions by empathizing with them, or to do so while keeping a
detached perspective. We found that participants yielded highly consis-
tent and similar ratings of emotions under both conditions. Using inter-
subject correlation-based analyses we found that, when encouraged to
empathize, participants’ brain activity in limbic (including cingulate and
putamen) and somatomotor regions (including premotor, SI and SII)
synchronized more during the movie than when encouraged to detach.
Using intersubject functional connectivity we found that comparing the
empathic and detached perspectives revealed widespread increases in
functional connectivity between large scale networks.

Participants were highly consistent in their rating of the protagonists’
feelings: this was true when comparing the ratings across participants
and across the two instruction conditions (r > 0.74). Such high consis-
tency is perhaps not surprising, considering that the movies were chosen
to depict strong and clear-cut emotions. That the consistency of ratings
across participants was indistinguishable across the two instructions is
important, as it suggests that participants were similarly attentive to the
feelings of the character under both conditions: had they been more
distracted under the Detached condition, we would have expected an
increase in noise, hence a reduction of consistency. However, we also
find that instructions to empathize amplified the excursions in the rat-
ings: while participants agreed across conditions about when the char-
acter was feeling more positive or more negative (as quantified using
correlations, which are scaling invariant), they felt the ‘ups’ were more
positive and the ‘downs’ more negative under the instructions to empa-
thize. This shows that the voluntary modulation of empathy has an
impact on the self-reported perception of other people’s feelings.

With regard to brain activity, we found that the movies synchronized
a broad and similar network of brain regions under both types of in-
structions. Most relevant to the question of whether participants are able
to deliberately modulate empathy, however, are the differences we
observed in the brain activity synchronization across instructions.

We had hypothesized that instructions to empathize should increase
synchrony in somatosensory, motor and limbic structures associated with
embodied processes. This was indeed the case: we found that instructions
to empathize enhanced synchronization in the primary and secondary
somatosensory cortices, inferior parietal, inferior frontal and premotor
cortices. All of these regions have been shown to be active both while
participants perform actions and observe them (Gazzola et al., 2007a,



Fig. 5. Instructions alter Intersubject Functional Connectivity. Connectiv-
ity maps for the 20 ICs in the Empathic condition (A) and Detached condition
(B). In (C) the changes in connectivity (Empathic-Detached) - only the differ-
ences that are significant are shown (FDR q ¼ 0.05), the rest is set to 0. Data can
be found at https://www.dropbox.com/sh/ysgqsdfrie5jc9q/AAB5KQVAMYjp6c
ntIKeTCwUHa?dl¼0.
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2007b, 2009; Rizzolatti and Craighero, 2004), or while experiencing and
observing touch (Keysers et al., 2004, 2010; Keysers and Gazzola, 2009).
The homologous brain regions in monkeys have been shown to contain
mirror neurons that map the actions and sensations of others onto the
monkey’s own (Rizzolatti and Sinigaglia, 2010; Gallese et al., 2004;
Umilta et al., 2001); and deactivating these brain regions impairs the
ability to perceive subtle kinematic cues (Valchev et al., 2017; Pobric and
Hamilton, 2006). This is compatible with the notion that while partici-
pants judge the actions and emotions of others, they can deliberately
regulate the degree to which they allow their own actions and sensations
to resonate with those they observe. In addition, we found that a number
of limbic brain regions also increase synchrony under the instructions to
empathize. This included in particular the mid-cingulate cortex and the
putamen. In the cingulate, this increased synchronization falls within the
midcingulate regions associated with the first hand experience of pain
and with witnessing the pain of others (Engen and Singer, 2013; Keysers
et al., 2010; Lamm et al., 2011; Singer et al., 2004; Meffert et al., 2013),
and mirror neurons for pain have recently been reported in the homol-
ogous region of the rat (Carrillo et al., 2019). This is compatible with the
notion that participants can voluntarily determine how much they allow
the pain of others to influence representations of their own sufferance.
Activity in the dorsal striatum, including the putamen, has been associ-
ated with reinforcement learning, and has been shown to be recruited
both while experiencing success and witnessing other people’s success
(Monfardini et al., 2013). This activity could therefore be compatible
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with the notion that participants under the Empathic condition let the
reward signals experienced by the protagonists recruit their own rein-
forcement learning systems more than during the detached condition.
Jointly, these observations are in line with the psychological literature
showing that empathy is a deliberately modulated process (Keysers and
Gazzola, 2014; Zaki, 2014; Weisz and Zaki, 2018).

We had also hypothesized that instructions to detach might increase
synchronization in regions associated with mentalizing, such as the TPJ,
pre-cuneus and vmPFC (Mar, 2011; Saxe and Kanwisher, 2003; Schurz
et al., 2014). Comparing our Detached-Empathic results with the
meta-analysis of Mar, 2011 indeed reveals that regions with increased
synchronization under instructions to detach overlapped with the men-
talizing network identified, particularly for non story-based tasks,
including in the TPJ and pre-cuneus (Fig. S5). In contrast, the Emp > Det
contrast shared more similarity with activations associated with net-
works associated with embodied concepts (Fig. S5). This trade-off in ISC
between regions associated with mentalizing and regions involved in
embodied processes confirm the proposal that instructions can alter the
balance across embodied and cognitive routes to the emotions of others
(Keysers and Gazzola, 2007).

That we used ISC based methods to examine the voluntary control of
empathy has implications for the interpretation of the results. Had we
made a block design with short empathy-triggering stimuli asking par-
ticipants to either empathize or detach on individual blocks, the contrast
of blocks in the Empathize and Detach conditions would have identified
both regions that control empathy (and would be tonically active during
blocks of a particular condition) and regions that represent the emotions
of the characters. Using ISC, we do not compare the average activity
across conditions (which are removed during demeaning), but focus on
fluctuations in time within a clip that are time-locked to the clip and
hence cary information about the content of the movie (see Nastase et al.,
2019 for a detailed discussion of what ISC measures). In this particular
context, this means that differences in ISC across conditions will pri-
marily identify differences in how the movie is represented rather than
tonic task processes. This makes our results complement those frommore
traditional designs, including those that ask people to regulate their own
emotions while viewing IAPS pictures that are often social in nature (see
Kohn et al., 2014; Ochsner et al., 2012 for reviews).

In addition to investigating ISC, we also measured the impact of in-
structions on intersubject functional connectivity. Because investigating
the connectivity between every possible pair of voxels would lead to an
explosion of multiple comparisons, we decided to reduce the dimen-
sionality of our dataset by first using an ICA on the voxels’ time course
averaged over participants. Averaging over participants before the ICA
ensured that the ICA preserved as much information as possible about the
activity fluctuations triggered by and hence time-locked to the movies.
This analysis revealed that the flow of stimulus-relevant information was
modified by the instructions, with the most frequent effect being that
instructions to empathize increased the functional connectivity across
networks relative to instructions to detach. Because of the number and
extent of the networks involved, a detailed discussion of the function of
each network that takes part in increased connectivity would seem
excessive. Comparing the ICs with networks associated with embodied
and mentalizing networks (Fig. S6) shows that some of the networks that
load most strongly on embodied networks (e.g. ICs 1, 10 and 15), change
their connectivity substantially depending on instructions to empathize,
while networks that load most strongly on mentalizing networks (e.g, ICs
3 and 9) maintain relatively unaltered connectivity.

Overall, that instructions to empathize lead to (i) stronger inter-
subject synchrony (i.e. the contrast Empathic > Detached revealed more
significant differences than the reverse contrast), (ii) stronger inter-
subject connectivity and (iii) more extreme emotion ratings suggests that
the instructions to empathizemay work in the brain as an overall opening
of neural gates that allow the movie to influence brain activity more
systematically and along stronger connections and triggers more intense
representations of the stimulus. Conversely, instructions to be detached

https://www.dropbox.com/sh/ysgqsdfrie5jc9q/AAB5KQVAMYjp6cntIKeTCwUHa?dl=0
https://www.dropbox.com/sh/ysgqsdfrie5jc9q/AAB5KQVAMYjp6cntIKeTCwUHa?dl=0
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serve to close such gates, forcing some information through alternate
networks and potentially serving as a protection mechanism.

Our study has a number of limitations that should be considered.
Firstly, in previous approaches (Nummenmaa et al., 2012; Viinikainen
et al., 2010), ratings about the emotions of the characters were not
collected in the scanner, but later during a second viewing of the movie.
In contrast, our participants were asked to rate the emotions of the
character while brain activity was measured. This was done to ensure
that participants would have to process the character’s emotions in all
conditions, as confirmed by the similar level of consistency (in terms of
ISC) of the ratings across empathic and detached conditions. However,
our approach has the disadvantage of creating a more artificial situation,
in which having to generate reports may have altered brain activity
relative to what it would have been during a more implicit emotion
processing during an unconstrained viewing. Repeating our experiment
without online rating could reveal how much of our instruction effects
would then be observed. Second, in our paradigm, we asked participants
to report how the main protagonist felt, therefore asking them to provide
a perceptual judgement. It is difficult to evaluate to what degree partic-
ipants felt the reported emotions. Psychophysiological measures could in
the future be analysed using a similar ISC approach to explore whether
the degree to which participants physiological states align to the movie
would also be under the deliberate control of our participants. Third, we
measured changes of ISC across instructions using the average ISC over
both movies. This approach does not allow us to pinpoint the moments in
themovies in which a particular voxel shows significant ISC or significant
changes in ISC. The tentative associations of brain regions showing dif-
ferential ISC and somato-motor or nociceptive content then remains
highly tentative, given all the limitations of reverse inference (Poldrack,
2006). In the future, time resolved ISC analyses, that pinpoint the
moment in time where ISC becomes significant (and significantly
different across conditions) could provide further insights into what
aspect of the stimulus is being processed in a given region.

In summary, we provide evidence that even when participants rate
other people’s feelings they are able to voluntarily gate the access of the
stimulus material to embodied and mentalizing networks and the in-
tensity with which they perceive the feelings of others. This adds to the
extensive psychological literature that has demonstrated that partici-
pants do regulate their empathy to maximize the benefits of empathy and
minimize its costs (see Weisz and Zaki, 2018 and Zaki, 2014 for recent
reviews of this literature), and to the emerging brain imaging literature
suggesting that brain activity is significantly altered while participants
choose whether to focus on the social and empathy triggering aspects of
complex emotional stimuli (Meffert et al., 2013; Bruneau et al., 2013;
Lahnakoski et al., 2014) and that brain activity and structure can be
altered by meditational practices that focus on different forms of inter-
subjective sensitivity (Klimecki et al., 2014; Valk et al., 2017).
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