42 research outputs found

    Étude de propriétés piezo-optiques du CCl4 et du CS2 en phase liquide

    Get PDF

    Roles of Ti in Electrode Materials for Sodium-Ion Batteries

    Get PDF
    Sodium-ion batteries offer a promising alternative to lithium-ion batteries due to their low cost, environmental friendliness, high abundance of sodium, and established electrochemical process. However, problems, such as low capacity, low storage voltage and capacity fade of electrode materials, must be resolved for the applications of sodium ion batteries. Many Ti-containing compounds were reported as cathode and anode materials, but very few studies focus on the role of Ti in electrodes used in sodium-ion batteries. This paper systemically reviews the roles of Ti in electrodes of sodium ion batteries. The Ti4+/Ti3+ redox couple is a good choice for anodes due to its low potential and it exhibits different storage voltages in different structures. Although Ti4+ does not participate in charge transfer in cathodes, it can indirectly enhance the capacity, cycling life and rate performance via structure change, cation order-disorder transition, and its interaction with the crystal lattice structure. This review will provide a new insight in designing and understanding novel high-performance electrodes

    Performance of Lithium Ion Cell Anode Graphites Under Various Cycling Conditions

    Get PDF
    Graphites MCMB-2810 and OMAC-15 (made by Osaka Gas Inc.), and SNG12 (Hydro Québec, Inc.) were evaluated (in coin cells with lithium counter electrodes) as anode materials for lithium-ion cells intended for use in hybrid electric vehicles. Though the reversible capacity obtained for SNG was slightly higher than that of OMAC or MCMB, its 1 st cycle efficiency was lower. Voltage vs capacity plots of cycling data show that the discharge and charge limits shift to higher capacity values due to continuation of anode side reactions. Varying the cycle charge and discharge limits was found to have no significant effect on fractional capacity shift per cycle

    Facile Protection of Lithium Metal for All‐Solid‐State Batteries

    No full text
    A nanolayer of reactive propyl acrylate silane groups was deposited on a lithium surface by using a simple dipping method. The polymerization of cross‐linkable silane groups with a layer of ally‐ether‐ramified polyethylene oxide was induced by UV light. SEM analysis revealed a good dispersion of silane groups grafted on the lithium surface and a layer of polymer of about 4 μm was obtained after casting and reticulation. The electrochemical performance for the unmodified and modified lithium electrodes were compared in symmetrical Li/LLZO/Li cells. Stable plating/stripping and low interfacial resistance were obtained when the modified lithium was utilized, indicating that the combination of silane and polymer deposition is promising to increase Li‐metal/garnet contact
    corecore