UNIVERSITE DU QUEBEC

MEMOIRE PRESENTE A UNIVERSITE DU QUEBEC A TROIS-RIVIERES

COMME EXIGENCE PARTIELLE POUR L'OBTENTION DE LA MAITRISE ES SCIENCES (PHYSIQUE)

PAR

.

ABDELBAST GUERFI B.SP. SCIENCES (PHYSIQUE)

ETUDE DE PROPRIETES PIEZO-OPTIQUES DU

<u>CC1₄ ET DU CS₂ EN PHASE LIQUIDE</u>

JUIN 1987

Université du Québec à Trois-Rivières

Service de la bibliothèque

<u>Avertissement</u>

L'auteur de ce mémoire ou de cette thèse a autorisé l'Université du Québec à Trois-Rivières à diffuser, à des fins non lucratives, une copie de son mémoire ou de sa thèse.

Cette diffusion n'entraîne pas une renonciation de la part de l'auteur à ses droits de propriété intellectuelle, incluant le droit d'auteur, sur ce mémoire ou cette thèse. Notamment, la reproduction ou la publication de la totalité ou d'une partie importante de ce mémoire ou de cette thèse requiert son autorisation.

A tout les membres de ma famille...

-

.

, -

REMERCIEMENTS

Si, comme le dit le proverbe, "la culture c'est ce qui reste lorsqu'on a tout oublié", la connaissance serait-elle l'art d'oublier un peu pour en savoir plus? Peut-être même, fermerions-nous les yeux pour mieux voir!

Mais avant d'ouvrir les yeux sur cette polémique qui s'annonce déjà chaude, j'aimerais rendre hommage à deux personnes qui n'ont pas les yeux fermés, deux personnes chez qui le tact et la simplicité n'ont rien à envier au leadership scientifique, en bref deux êtres que j'admire beaucoup: mon directeur de mémoire, le dr Jean-Marie St-Arnaud et le directeur du groupe de recherche sur les diélectriques, le dr Tapan K.Bose.

Je suis reconnaissant aux autres personnes qui m'ont aidé à la réalisation de cette étude.

Aux docteurs J.S. Sochanski et Adel @ntippa pour leur disponibilté et la pertinence de leurs suggetions qui ont été grandement appréciées. Aux docteurs Louis Marchildon et Jean Miletic, pour leurs conseils judicieux.

Aux techniciens de l'atelier mécanique de l'université du Québec à Trois-Rivières pour leur disponibilté et la réalisation des principaux composants de notre montage.

Je suis reconnaissant aux membres de ma famille et à tous mes amis, plus particulièrement Mustapha Cherradi, pour leurs soutiens moraux, et pour leurs encouragements tout au long de cette recherche.

Cette étude fut rendue possible grâce aux subventions du Conseil de Recherche en Sciences Naturelles et en Génie du Canada et à celles du Ministère de l'Education du Québec (Fonds FCAR).

Enfin, je tiens à exprimer ma gratitude à la direction de la formation et du perfectionnement à l'étranger du Ministère de l'Enseignement Supérieur de l'Algérie pour m'avoir octroyé une bourse d'étude et d'avoir ainsi élargi l'horizon de ma vie estudiantine.

RESUME

L'étude des propriétés piézo-optiques des liquides permet d'améliorer les connaissances de base de l'état liquide. Du point de vue fondamental, l'étude du comportement de l'indice de réfraction de liquides soumis à de fortes pressions (P) le long de diverses isothermes est une source d'informations sur les interactions moléculaires et la structure des liquides.

L'objectif du présent travail est de vérifier si la polarisabilité électronique (α_{el}) d'un liquide est indépendante de la densité (d) comme le suppose la théorie classique de Lorentz-Lorenz qui propose l'équation suivante:

$$\frac{n^2 - 1}{n^2 + 2} = \frac{4}{3} \frac{N_A}{M} \propto_{e_1} d$$

où N_A est le nombre d'Avogadro et M est la masse molaire.

Pour atteindre cet objectif, nous mesurons d'abord avec un réfractomètre l'indice de réfraction (n_{o}) à la pression atmosphérique. Par la suite, nous mesurons \triangle n en fonction de la pression sur diverses isothermes avec un interféromètre de Michelson couplé à un laser He-Ne.

Par la suite, nous comparerons les mesures de (n) en fonction de (P) réalisées sur diverses isothermes avec celles de la constante diélectrique (E) pour les même isothermes (réalisées par Mopsik). En effet, les mesures de (n) sont faites à une fréquence optique (10^{14} Hz) et celles de (E) sont réalisées à basse fréquence (10^3 Hz) . On peut alors déduire l'effet des interactions moléculaires dû au moment électrique. Les valeurs de (E – n²) en fonction de la densité sont comparées avec celles obtenues dans l'infrarouge lointain.

Les résultats obtenus nous permettent de conclure que la polarisabilité électronique (α_{el}) du CCl₄ et du CS₂ n'est pas une constante. De plus, elle varie légérement en fonction de la température. La différence (E - n²) nous a permis de calculer la contribution de l'absorption induite par collision, pour le liquide CCl₄, dans l'infrarouge. Celle-ci est de 40%.

vi

TABLE DES MATIERES

PAGE

REMERCIEMENTSiii
RESUME
TABLE DES MATIERES
LISTE DES FIGURES
LISTE DES TABLEAUX
INTRODUCTION
CHAPITRE I : THEORIE
1.1 Approche de la théorie classique4
1.2 Dérivation de l'équation de Lorentz-Lorenz6
1.3 Autres équations et situation de l'équation de
Lorentz-Lorenz10
1.3.1 Equation d'Onsager-Bottcher
1.3.2 Equation de Kirkwood-Brown
1.3.3 Equation d'Omini12
1.4 Approche quantique15
1.4.1 Force de longue portée15
1.4.2 Force de courte portée15
1.5 Calcul de la relation ($E - n^2$)

1.6	Application à la phase liquide	20
	Liste des ouvrages cités dans l'introduction et	
	dans le chapitre l	2.3

C	CHAPITRE II : METHODOLOGIE EXPERIMENTALE
	Introduction
2	2.1 Méthode expérimentale27
2	2.2 Calibration du manomètre
2	2.3 Déformation de la cellule
	2.3.1 Mesure de la déformation mécanique
	2.3.2 Calcul de la déformation thermique
2	2.4 Calcul de la densité
	Liste des ouvrages cités dans le chapitre II39

PITRE II	I : EQUIPEMENT EXPERIMENTAL
Descript	tion du montage
Descript	tion des composantes42
3.2.1	Interféromètre à laser42
3.2.1.1	Interféromètre42
3.2.1.2	Laser
3.2.2	Principe de fonctionnement de
	l'interféromètre à laser45
3.2.3	Enceinte de la cellule-interface47
3.2.4	Cellule optique
3.2.4.1	Espaceur
3.2.4.2	Fenêtres optiques
	Descript Descript 3.2.1 3.2.1.1 3.2.1.2 3.2.2 3.2.2 3.2.2 3.2.4 3.2.4.1 3.2.4.2

.

viii

	3.2.5	Interface
	3.2.6	Qualité des liquides étudiés53
	3.2.7	Table de granit
	3.2.8	Compresseur
3.3	Facteur	s influençant l'indice de réfraction56
	3.3.1	Contrôle de la température56
	3.3.1.1	Enceinte de la cellule et de l'interface56
	3.3.1.2	Enceinte de l'interféromètre de Michelson57
	3.3.1.3	Pièce
	3.3.2	Humidité
3.4	Principa	aux appareils utilisés au cours de
	l'expér	ience
	Liste de	es ouvrages cités dans le chapitre III60
CHA	PITRE IV	: <u>RESULTATS EXPERIMENTAUX</u> 61
	Introduc	ction
4.1	Mesure d	de n _o 61
4.2	Mesure (de la variation de l'indice de réfraction64
4.3	Calcul	de l'indice de réfraction (n) et de
	l'équat	ion de Lorentz-Lorenz67
	4.3.1	Calcul de l'indice de réfraction67
	4.3.2	Calcul de l'équation de Lorentz-Lorenz76
	4.3.2.1	Equation de Lorentz-Lorenz modifiée76
	4.3.2.2	Equation de Lorentz-Lorenz classique83
4.4	Calcul e	de la polarisabilité83

ix

.

4.5 Calcul de	e la différence (E - n²) pour le liquide
^{CC1} 4····	
Liste de	s ouvrages cités dans le chapitre IV98
CHAPITRE V:]	DISCUSSION
Introduc [.]	tion
5.1 Système d	de réfraction
5.1.1 Eq	uation de Lorentz-Lorenz
5.1.2 Po	larisabilité101
5.2 Relation	$(\in -n^2)$ pour le CCl ₄ 104
Liste de	s ouvrages cités dans le chapitre V106
Conclusio	on107
APPENDICE A	Exemple de calcul de l'indice de
	réfraction (n) à partir du rapport
	$(\Delta n)/(\Delta T)$
APPENDICE B	Série de polynômes qui représentent
	l'équation de Lorentz-Lorenz modifiée pour
	chaque liquide et chaque température110
APPENDICE C	Calcul de Γ_{KK} pour le liquide CCl ₄ 121
APPENDICE D	Texte du programme général (Lorentz)123

X

LISTE DES FIGURES

FIGURE

PAGE

2.1	Courbe de calibration du capteur de pression
	à l'aide d'un manomètre
2.2	Courbe de la déformation mécanique de la cellule
	optique en fonction de la pression
3.1	Système pour la mesure de propriétés piézo-
	optiques de liquides4!
3.2	Faisceau à double fréquence à la sortie du
	laser
3.3	Illustration du principe de fonctionnement
	de l'interféromètre-laser46
3.4	Coupe de la cellule optique pour les liquides49
3.5	Coupe de l'interface
3.6	Schéma de fonctionnement du compresseur55
4.1	Le système utilisé pour enlever les bulles
	d'air65
4.2	Courbe de l'indice de réfraction en fonction de la
	pression pour le CCl ₄ à 0,0 °C, 25,0 °C
	et 50,0 °C

FIGURE

4.3	Courbe de l'indice de réfraction en fonction de la
	pression pour le liquide CS ₂ à 0,0 et 25,0 °C77
4.4	Courbe de l'équation de Lorentz-Lorenz modifiée
	L-L(m) en fonction de la densité pour le liquide
	CC1 ₄ à T=0,0 °C78
4.5	Courbe de l'équation de Lorentz-Lorenz modifiée
	L-L(m) en fonction de la densité pour le liquide
	CCI ₄ à T= 25,0 °C79
4.6	Courbe de l'équation de Lorentz-Lorenz modifiée
	L-L(m) en fonction de la densité pour le liquide
	CCl ₄ à T= 50,0 °C80
4.7	Courbe de l'équation de Lorentz-Lorenz modifiée
	L-L(m) en fonction de la densité pour le liquide
	CS ₂ à T=0,0 °C81
4.8	Courbe de l'équation de Lorentz-Lorenz modifiée
	L-L(m) en fonction de la densité pour le liquide
	CS ₂ à T=25,0 °C82
4.9	Courbe de l'équation de Lorentz-Lorenz L-L
	en fonction de la densité pour le liquide
	CC1 ₄ à T= 0,0 °C
4.10	Courbe de l'équation de Lorentz-Lorenz L-L
	en fonction de la densité pour le liquide

PAGE

,

.

xiii

	CCl ₄ à T= 25,0 °C85
4.11	Courbe de l'équation de Lorentz-Lorenz L-L
,	en Fonction de la densité pour le liquide
	CC1 ₄ à T= 50,0 °C86
4.12	Courbe de l'équation de Lorentz-Lorenz L-L
	en fonction de la densité pour le liquide
	CS ₂ à T= 0,0 °C87
4.13	Courbe de l'équation de Lorentz-Lorenz L-L
	en fonction de la densité pour le liquide
	CS ₂ à T= 25,0 °C88
4.14	Courbe de F _{KK} en fonction de la densité pour
	le liquide CCl ₄ à T= 0,0 °C94
4.15	Courbe de F _{KK} en fonction de la densité pour
	le liquide CCl ₄ à T= 25,0 °C95
4.16	le liquide CCl ₄ à T= 25,0 °C95 Courbe de $\Gamma_{\rm KK}$ en Fonction de la densité pour

LISTE DES TABLEAUX

TABLEAU

PAGE

2.1	Déformations thermiques calculées pour les
	fenêtres optiques "D _f ", du corps de la cellule
	"D _C " et la déformation totale "D _t "
2.2	Constantes de l'équation de Mopsik pour le calcul
	de la densité
4.1	Indice de réfraction (n _o) du CCl ₄ liquide et
	du CS ₂ liquide à la pression atmosphérique pour
	différentes températures et différentes longueurs
	d'onde
4.2	Valeurs numériques de l'indice de réfraction (n)
	et de l'équation de Lorentz-Lorenz modifiée L-L(m)
	pour le liquide CCl ₄ à T= 0,0 °C68
4.3	Valeurs numériques de l'indice de réfraction (n)
	et de l'équation de Lorentz-Lorenz modifiée L-L(m)
	pour le liquide CCl ₄ à T= 25,0 °C69
4.4	Valeurs numériques de l'indice de réfraction (n)
	et de l'équation de Lorentz-Lorenz modifiée L-L(m)
	pour le liquide CCl $a = 50 - 0 \circ C$

- 4.5 Valeurs numériques de l'indice de réfraction (n) et de l'équation de Lorentz-Lorenz modifiée L-L(m) pour le liquide $CS_2 \ge T = 0, 0......74$

- 4.8 Valeurs de la différence (Δ) obtenues avec nos valeurs de Γ_{KK} et celles de Marteau à T=0,0 °C, T= 25,0 °C et T= 50,0 °C......93

PAGE

INTRODUCTION

L'étude des interactions moléculaires dans un fluide comprimé peut être réalisée aussi bien à partir des mesures de la constante diélectrique que de celles de l'indice de réfraction. Cette étude constitue une source intéressante d'informations sur la structure moléculaire et les interactions moléculaires qui peuvent être reliées à la polarisabilité.

En 1880, Lorenz [1] et Lorentz [2] ont élaboré pour la première fois une équation qui fait le lien entre la polarisabilité électronique " α_{el} ", la densité "d(g/cm³)" et l'indice de réfraction "n". Elle se définie comme suit :

$$\frac{D^2 - 1}{D^2 + 2} = \frac{4}{3} \pi \frac{N_A}{M} \alpha_{el} d$$

où N_A est le nombre d'Avogadro, α_{e1} est la polarisabilité électronique et M est la masse molaire.

En phase gazeuse, aux faibles densités, la relation (1) s'accorde généralement bien avec l'expérience. Cependant aux densités élevées on constate [3-5] une déviation de cette équation. En effet, cette équation ne tient pas compte des interactions moléculaires diverses. Ces dernières ont été prises en considération dans la phase gazeuse à l'aide d'un développement en série de puissance de la densité. Cependant, il existe peu de données expérimentales au sujet de l'application de l'équation (1) à l'état liquide.

Le but du présent travail est d'étudier les propriétés piézo-optiques de molécules non polaires dans l'état liquide et de vérifier la validité de la relation (1). L'aspect fondamental de cette étude, dans le domaine piézo-optique, est de mesurer la variation de l'indice de réfraction (Δn) en fonction de la densité (d) le long de diverses isothermes. Cette étude permet d'accroître les connaissances de base sur l'état liquide.

L'étude de la variation de l'indice de réfraction d'un liquide en fonction de la densité est un sujet de recherche qui existe depuis peu. Jusqu'à maintenant, des études dans ce domaine ont été publiées par Waxler et al [6,7] en 1964 et plus récemment par le groupe de Vedam [8-11].

La méthode utilise l'interféromètre de Michelson et elle diffère de celle de Waxler et Weir [6] qui ont employé un interféromètre Fabry-Perot et de celle de Vedam et Limsuwan [8] qui ont utilisé la méthode des anneaux de

Newton. De plus, nos travaux sont réalisés à une longueur d'onde différente de celles des auteurs précités. Par rapport à ces auteurs, nous avons, pour chaque liquide (CCl₄ et CS₂), fait des mesures sur au moins deux isothermes.

Les mesures de l'indice de réfraction "n" comparées à celles de la constante diélectrique "E" en fonction de la densité permettent d'extraire des informations sur l'absorption induite par collision à l'aide la courbe ($E - n^2$) versus la densité. Ces informations peuvent être comparées avec des études faites dans l'infrarouge lointain.

Dans le premier chapitre de ce travail, nous traitons de quelques théories classique et quantique. Dans le deuxième chapitre, nous exposons la méthodologie expérimentale pour laquelle nous décrivons l'approche retenue, le principe de l'expérience et la description des diverses composantes de notre montage. Le troisième chapitre va porter sur l'équipement expérimental. On y rapporte aussi les corrections et les précautions prises pour assurer un maximum de précision sur les mesures de l'indice de réfraction. Les résultats obtenus ainsi qu'une discussion générale font respectivement l'objet du quatrième et du cinquième chapitre.

CHAPITRE I

THEORIE

1.1 APPROCHE DE LA THEORIE CLASSIQUE

Mossotti [12] a développé une relation entre la constante diélectrique "E" et la densité "d" de molécules en phase gazeuse dans le domaine diélectrique. Cependant, cette expression est demeurée relativement inconnue jusqu'à ce qu'elle soit dérivée à nouveau par Clausius [13] en 1879:

$$\frac{\varepsilon - 1}{\varepsilon + 2} = \frac{4}{3} \pi \frac{N_A}{M} \propto_{Td} 1.1$$

où α_T est la polarisabilité totale, N_A est le nombre d'Avogadro et M est la masse molaire.

A la même époque, Lorenz [1] a obtenu une équation correspondante pour le carré de l'indice de réfraction "n". Lorentz [2] a vérifié la validité de cette équation, en introduisant le concept du champ interne. Il a clarifié la compréhension théorique du problème et a ainsi contribué au développement de la théorie en proposant l'équation suivante:

$$\frac{n^2 - 1}{n^2 + 2} = \frac{4}{3} \pi \frac{N_A}{M} \alpha_{e1} d$$
 1.2

^{Où ¤}el est la polarisabilité électronique

Pour les fréquences dans la bande optique, "E" peut être remplacé par "n²" qui transforme l'équation de Clausius-Mossotti (1.1) en une équation appelée équation de Lorentz-Lorenz (1.2). Dans le développement de ces deux équations, la polarisabilité est considérée comme paramètre indépendant de la densité.

L'influence des interactions moléculaires sur l'indice de réfraction d'un système fluide se manifeste de deux manières. D'une part, ces interactions influencent l'indice de réfraction par leurs effets sur les fonctions de distributions moléculaires; c'est ce que nous appellons l'effet statistique. D'autre part, elles peuvent produire des changements dans les propriétés optiques de la molécule ellemême par l'intermédiaire de la polarisabilité; c'est l'effet quantique. Les théories statistiques du premier effet sont surtout dues à Yvon [14] et Kirkwood [15] qui ont développé la théorie statistique de la constante diélectrique. Dans leurs travaux, ces deux auteurs ont considéré que la polarisabilité "«" était une constante indépendante de la densité et des interactions moléculaires.

1.2 DERIVATION DE L'EQUATION DE LORENTZ-LORENZ

Le lien entre le déplacement électrique \vec{D} et le champ électrique \vec{E} est donnée par :

$$\vec{D} = \in \vec{E}$$
 1.3

où E est la constante diélectrique [16].

La relation précédente (1.3) est toutefois valide uniquement pour des gaz ou des liquides soumis à des champs électriques statiques ou de très faibles fréquences. Pour un milieu diélectrique homogène, isotrope et de forme sphérique, la polarisation \overrightarrow{P} est donnée par:

$$\overrightarrow{P} = \frac{(\epsilon - 1)}{4\pi} \overrightarrow{E}$$
 1.4

où \vec{E} est le champ électrique moyen dans le diélectrique.

Dans le cas d'un champ électrique modéré incident sur une molécule, deux effets différents peuvent être associés à un dipôle: ce sont la déformation (effet translationnel) et la rotation. On note cependant que la déformation peut avoir une double origine. Dans un premier temps, il peut y avoir déplacement des électrons par rapports aux charges positives. On parle alors de polarisabilité électronique (α_{el}). Dans un deuxième temps, on peut assister au déplacement d'atomes ou de groupes d'atomes les uns par rapport aux autres. On est alors en présence de la polarisabilité atomique (α_{at}). L'effet d'orientation s'associe au fait que les dipôles permanents tendent à s'orienter dans la direction du champ local. Il est bon de noter que ce dernier effet s'oppose au mouvement thermique des molécules et dépend ainsi fortement de la température.

Dans le présent travail, nous avons étudiés les molécules non polaires CCl_4 et CS_2 . Ainsi, nous sommes en présence des seuls effets de déplacements. De plus, comme nos travaux ont été réalisés à une fréquence dans la région du visible, nous n'observons que la polarisabilité électronique. Selon la théorie classique [16], cette polarisabilité, qui est un phénomène intermoléculaire, serait faiblement dépendante de la température. Notre étude sur diverses isothermes du $CCl_4 \ge 0$, 25 et 50 °C et du $CS_2 \ge 0$ et 25 °C vise \ge vérifier cet avancé.

La polarisation induite \overrightarrow{P} sur une molécule est définie par:

$$\vec{P} = N \propto \vec{E}_{L}$$
 1.5

où N est le nombre de molécules par unité de volume, \propto est la polarisabilité et \vec{E}_{L} est le champ moyen ou champ interne

agissant sur cette molécule. Envoyant (1.5) dans (1.4), on obtient:

$$\frac{\varepsilon - 1}{4 \pi} \overrightarrow{E} = N \propto \overrightarrow{E}_{L}$$
 1.6

Dans le cas d'une sphère diélectrique plongée dans le vide, le champ local [17] est donné par :

$$\vec{E}_{L} = \frac{\vec{E} + 2}{3} \vec{E}$$
 1.7

et, des équations (1.6) et (1.7) découle:

$$\frac{\epsilon - 1}{\epsilon + 2} = \frac{4}{3} \pi N \alpha_{T} \qquad 1.8$$

où α_T est la polarisabilité totale (électronique et atomique). Or, N peut être remplacé par:

$$N = \frac{N_A}{M} d$$
 1.9

où N_A est le nombre d'Avogadro, M la masse molaire et d est la densité en (g/cm³). On obtient ainsi l'équation proposée par Clausius et Mossotti:

$$\frac{\epsilon - 1}{\epsilon + 2} = \frac{4}{3} \pi \frac{N_A}{M} \propto_T d$$
1.10

Cette équation est valable pour les mesures de E réalisées à basse fréquence, généralement vers l kHz. Cependant, si on fait des mesures à hautes fréquences, par exemple dans la bande optique, on mesurera l'indice de réfraction "n" plutôt que la constante diélectrique "E". Dans notre cas, on note que la fréquence optique (f≈ 10⁻¹⁴ Hz) est telle que f⁻¹ est plus élevée que le temps de relaxation de la majorité des fluides (≈ 10⁻¹² sec) [18]. Il en résulte que la molécule ne peut plus s'orienter dans le champ externe. On observera alors uniquement la polarisabilité électronique (α_{el}). Maxwell [19] a proposé la relation suivante entre la constante diélectrique et l'indice de réfraction:

$$\mathsf{E} = \mathsf{n}^2 \qquad \qquad 1.11$$

L'équation (1.10) peut donc être modifiée avec (1.11) pour donner l'équation proposée par Lorentz et Lorenz [1,2]:

$$\frac{n^2 - 1}{n^2 + 2} = \frac{4}{3} \pi \frac{N_A}{M} \approx_{e1} d$$
1.12

Coome nous l'avons vu précédemment, la polarisabilité électronique (α_{el}) est associée à un phénomène moléculaire.

Selon l'approche classique, elle est une constante par rapport à la variation de densité. On admet cependant une faible dépendance vis à vis la température.

1.3 AUTRES EQUATIONS ET SITUATION DE L'EQUATION DE LORENTZ-LORENZ

Plusieurs autres expressions ont été développées dans la théorie de l'indice de réfraction reliant l'indice "n" et la densité "d". Outre l'équation de Lorentz-Lorenz les principales autres équations sont regroupées ci-après.

1.3.1 EQUATION D'ONSAGER-BOTTCHER

Cette équation est dérivée de la théorie statistique par Onsager [20]. Il utilise le champ de réaction au lieu du champ de Lorentz pour le calcul de l'orientation et de la distortion de la molécule. Mais l'inclusion du paramètre ajustable " ξ " rend cette équation moins fiable.

$$\frac{9n^2}{(n^2 - 1)(2n^2 + 1)} + \frac{2(n^2 - 1)}{(2n^2 + 1)} \cdot \frac{1}{\xi} = Z^{-1} \quad 1.13$$

où $Z = \frac{4}{\pi} \frac{N_A}{M} \propto_{e_1} d$

$$\xi = \frac{4\pi N_A}{3} a^3$$

où "a", le rayon effectif de la molécule, est un paramètre ajustable.

1.3.2 EQUATION DE KIRKWOOD-BROWN

Cette équation est dérivée de la théorie statistique rigoureuse pour des liquides diélectriques ayant des molécules sphériques non polaires. Pour élaborer son équation, Kirkwood [21] a adopté deux approximations:

a) La fonction de distribution de paires est approximée par une fonction échelon de la forme:

$$g(r) = \begin{cases} 0 & r < 2a \\ 1 & r > 2a \end{cases}$$

"a" étant le rayon de la molécule.

b) La fonction de distribution de trois molécules est exprimée en termes de fonctions de distribution de deux molécules tout en ne considèrant pas l'influence de la troisième molécule, autrement dit :

$$g_{123}(r) \approx g_{12}(r) \cdot g_{23}(r) \cdot g_{31}(r)$$

.

d'où l'équation:

$$\frac{n^2 + 2}{n^2 - 1} = Z^{-1} + [(15/16) - (4\xi)^{-1}]Z \qquad 1.14$$

Cette équation possède l'avantage d'être dérivée des bases de la théorie statistique des liquides. Par conséquent, son application à l'état liquide est plus adaptée. Toutefois, la présence du paramètre ajustable " ξ " complique le calcul de cette équation.

1.3.3 EQUATION D'OMINI

La constante diélectrique statique d'un liquide polaire est étudiée par l'analyse de la fonction de distribution d'une paire de molécule et de l'interaction dipôle-dipôle dans un ensemble fini de composantes de Fourier [22]. Dans une approximation du champ moyen, la théorie nous conduit à une formule finale qui ne contient aucun paramètre ajustable. Grâce à cette théorie, Omini [23] a pu expliquer d'une façon satisfaisante la dépendance de la constante diélectrique sur la température et la pression pour l'état liquide ainsi que la dépendance de ces paramètres sur l'indice de réfraction. L'équation proposée par Omini est:

$$n^{2} - 1 = 3Z \frac{1 + Z[3 + F(Z)]}{(1 + 3Z)(1 - \Gamma Z) + \Gamma ZF(Z)}$$
 1.15

où
$$\Gamma = (1 - N_{a}\sigma k_{B}T)^{-1}$$

$$F(Z) = 1 + 0,1756 \frac{3Z}{1 + 3Z}$$
 1.16

où σ est la constante de compressibilité isotherme et k_B est la constante de Boltzman. Cette équation ne possède aucun paramètre ajustable.

Les équations (1.12), (1.13) et (1.14) sont applicables pour les gaz, les liquides et les solides. Par contre, l'équation (1.15) est dérivée principalement pour l'état liquide. En principe, les équations (1.13) et (1.14) [10,11] sont moins fiables que celles d'Omini et de Lorentz-Lorenz en raison de la présence de la fraction de remplissage " ξ ". Rappelons que la relation de Lorentz-Lorenz ne prend pas en considération les fluctuations d'orientation (rotation) qui dépendent fortement de la température. C'est pourquoi l'effet de cette dernière n'apparaît pas explicitement dans leur l'équation comme dans l'équation d'Omini (équation 1.15). Cet effet sera examiné dans le chapitre IV. De façon générale, les valeurs calculées selon ces équations [9] ont tendance à s'écarter, à haute pression, des valeurs expérimentales. En effet, les auteurs de ces équations classiques ont négligé la contribution d'interactions quadrupole-quadrupole induit et les fluctuations d'orientation (nulles pour des molécules sphériques). Dans son approche plus récente, Omini en a tenu compte.

Suite à cette brève description des principales équations utilisées encore aujourd'hui pour expliquer les interactions moléculaires en phase liquide, nous avons voulu avant tout vérifier, avec grande précision la validité de l'équation de Lorentz-Lorenz. Par rapport aux études optiques antérieures [6-11], notre étude est réalisée à une longueur d'onde (λ = 632,8 nm) différente et sur plus d'une isotherme.

Nous avons choisi l'équation de Lorentz-Lorenz parce qu'elle ne comporte aucun paramètre ajustable. D'inspiration classique, elle est simple et se compare avantageusement avec l'équation de Clausius-Mossotti, ce qui nous conduit à étudier la différence ($\varepsilon - n^2$) qui permettrait de comparer nos résultats avec les mesures de l'absorption induite dans la bande de l'infrarouge lointain.

1.4 APPROCHE QUANTIQUE

Dès que la polarisabilité dans la bande des fréquences optiques dépend des effets électroniques, il est préférable de traiter le problème de la polarisabilité à l'aide de la mécanique quantique. En effet, cette dernière est dérivée spécialement pour les molécules.

1.4.1 Force de longue portée

L'influence des forces intermoléculaires de longues portées sur l'indice de réfraction et sur la rotation moléculaire est examinée en utilisant la mécanique quantique. Jansen et Mazur [24] ont quantifié pour la première fois l'effet rotationnel du moment dipolaire dans l'interaction hamiltonienne. Ces derniers ont choisi comme méthode de calcul celle de la perturbation. A l'aide de celle-ci, ils ont obtenu une valeur positive de " $\Delta \alpha$ ". Ainsi, la polarisabilité croît lorsque la distance intermoléculaire décroît dans l'interaction d'une paire de molécule.

1.4.2 Force de courte portée

A une certaine distance intermoléculaire, il faut tenir compte des interactions de courte portée comme les effets de recouvrement électronique et d'échange, i.e. le transfert par transition des électrons entre les bandes énergétiques.

Les travaux réalisés sur les interactions de courte portée par De Boer et al [25], qui ont utilisé le modèle d'un atome d'hydrogène comprimé dans une petite boîte sphérique, ont donné lieu à une diminution de la polarisabilité. Par la suite, Dupré et McTague [26] ont utilisé le modèle de collision des paires de molécules. Ces auteurs ont calculé $\alpha(R)$ en fonction de la distance intermoléculaire "R" et ont trouvé que $\Delta \alpha$ était négatif.

Les études de de Groot et ten Seldam [27] sur la polarisabilité dans l'état gazeux ont montré que "«" croît avec la densité jusqu'au point où elle devient décroîssante. Cependant, dans l'état solide, elle est généralement décroîssante lors de l'augmentation de la densité.

L'état liquide peut être considéré comme un état intermédière entre la phases gazeuse et la phase liquide. Lorsque la pression est élevée dans la phase gazeuse ou modérée dans la phase solide, la matière converge normalement vers l'état liquide. Alors, d'après la discussion ci-dessus nous pouvons conclure que la polarisabilité décroîtrait en fonction de la diminution de la distance intermoléculaire dans l'état liquide. Il n'existe, à notre connaissance, aucun calcul quantique sur le comportement de la polarisabilité en fonction de la densité dans la phase liquide.

La connaissance de l'indice de réfraction "n" et de la constante "E" nous permet d'obtenir ($E - n^2$). De cette différence, nous pouvons extraire des informations sur l'absorption induite par collision. Ces informations peuvent être comparées avec des études faites dans une bande de fréquences où les translations et les rotations moléculaires sont actives tel que présenté dans le paragraphe suivant.

1.5 CALCUL DE LA RELATION $(E - n^2)$

Nous savons [28] que les translations et les rotations moléculaires deviennent actives dans l'infrarouge lointain à cause des moments dipolaires induits par les forces intermoléculaires dans les paires de molécules en collision. Le module du moment dipolaire dépend des distances intermoléculaires, internucléaires et de la direction d'orientation des molécules en collision. Les paires de molécules absorbent l'énergie de radiation du champ électrique à leur fréquence de translation et de rotation. L'intensité de ces radiations, pour une bande d'absorption donnée, dépend de la force du moment dipolaire induit qui à son tour dépend des paramètres moléculaires tels que la polarisabilité et les moments multipolaires.

Il est nécessaire de calculer la différence $(E - n^2)$ pour bien s'informer sur les interactions moléculaires entre la fréquence optique et la fréquence du champ électrique, surtout dans l'état liquide où il existe peu d'informations. Dans la phase gazeuse, on peut faire le développement du viriel des équations de Clausius-Mossotti et de Lorentz-Lorenz:

$$e - 1$$

= $A_e d + B_e d^2 + C_e d^3 + \dots$ 1.17
 $e + 2$

$$\frac{n^2 - 1}{n^2 + 2} = A_R d + B_R d^2 + C_R d^3 + \dots \quad 1.18$$

où A_{E} , B_{E} et C_{E} sont respectivement le premier, le deuxième et le troisième coefficient viriel du diélectrique. De même, A_{R} , B_{R} et C_{R} sont les coefficients viriels de la réfractivité.

Pour un gaz multipolaire, le second coefficient viriel B_{\in} est donné par [29] :

$$B_{e} = B_{or} + B_{R}$$
 1.19

où B_{or} mesure la contribution d'interactions entre deux moments dipolaires induits par le champ multipolaire (champ moléculaire). B_R est la contribution d'interactions entre deux moments dipolaires permanents produits par le champ externe.

La différence entre les équations (1.17) et (1.18) donne :

$$\frac{e - 1}{e + 2} - \frac{n^2 - 1}{n^2 + 2} = (A_e - A_R)d + (B_e - B_R)d^2 + ..$$
1.20

Dans la phase gazeuse, on a généralement $E \approx n^2 \approx 1$ et on peut faire [29]:

$$E + 2 \approx 3$$
; $n^2 + 2 \approx 3$

L'équation (1.20) peut alors être modifiée en tenant compte de cette approximation et on obtient:

$$\frac{e - n^2}{a} = (A_e - A_R) d + (B_e - B_R) d^2 + \dots 1.21$$

Utilisons la relation de dispersion de Krammers-Kronig [29]:

$$(E - n^2) = (2c/\pi) \int_0^\infty \frac{\alpha(w)}{w^2} d(w)$$
 i.22

où c est la vitesse de la lumière, w = $2\pi f$ est la fréquence angulaire et f est la fréquence linéaire. L'expansion virielle de (1.22) peut s'écrire:

$$\int_{0}^{\infty} \frac{\alpha(w)}{w^{2}} dw = A_{\Theta d} + B_{\Theta d}^{2} + C_{\Theta d}^{3} + \dots \qquad 1.23$$

Des équations (1.22) et (1.23), on déduit:

$$B_{or} = (B_{e} - B_{R}) = (2c/3\pi) B_{e}$$
 1.24

Cette dernière relation (1.24) établit un lien entre les mesures dans l'infrarouge lointain (B_{Θ}) , dans les basses fréquences (B_{E}) et dans les hautes fréquences (B_{R}) . On constate qu'on peut déduire le B_{or} à partir des mesures de "n" comparées à celles de "E". Une mise en graphique de $(E - n^2)$ en fonction de la densité permet de déduire B_{or} à partir des metrir des partir des de la densité permet de déduire B_{or} à partir des metrir des metrir des metrir des de la densité permet de déduire B_{or} à partir des metrir des de la densité permet de déduire B_{or} à partir des metrir des metrir des metrir des de la densité permet de déduire B_{or} à partir des équations (1.21), (1.23) et (1.24).

1.6 APPLICATION A LA PHASE LIQUIDE

Dans la phase liquide, les approximations $E + 2 \approx 3$ et n²+2 \approx 3 ne sont plus valables puisque, pour le CCl₄ à 25 °C, nous avons E = 2,63220 et n² = 2,11964 à un bar. Il faut donc utiliser une approche différente pour évaluer ($E - n^2$).

En conséquence, nous proposons de faire l'approximation $E + 2 \approx n^2 + 2 \approx 4,3$ pour le CCl₄ liquide et 4,6 pour le CS₂ liquide qui sont l'objet de la présente étude. Soulignons que
dans la phase liquide, nous ne pouvons pas séparer les interactions entre deux molécules et plus. Les approximations considérées nous conduisent à:

 $\frac{E - n^2}{n} \approx (A_E - A_R)d_{11} + \Sigma \text{(toutes les interactions)} \quad 1.25$

où n = 4,3 pour le liquide CCl_A

 $\tilde{n} = 4.6$ pour le liquide CS_2

d_{li}= densité du liquide

Puisque les liquides choisis sont non polaires, l'absorption due aux molécules simples est faible. En effet, la contribution absolue ($A_E - A_R$) est proportionnelle au nombre des molécules (N):

$$(A_{\varepsilon} - A_{R}) \sim N$$

= k N 1.26

où k est le coefficient de proportionnalité.

Si on considère l'hypothèse selon laquelle la polarisabilité et l'interaction entre la lumière et les molécules simples ne changent pas dans les deux phases gazeuse et liquide, nous pouvons supposer que le coefficient "k" est le même dans les deux phases. Par conséquence, on peut approximer l'interaction absolue dans la phase liquide par:

$$A_{e} - A_{R} \approx \left[(e - n^{2})/3d \right]_{gas}$$
 1.27

Des équations (1.25), (1.27) et de la relation de dispersion de Krammers-Kronig, on trouve:

$$[(E - n^{2})/\hbar]_{1;} - [(E - n^{2})/3d]_{gas} \cdot d_{1;} \approx \frac{1}{\pi^{2}} \int \frac{\alpha(f)}{f^{2}} df$$
$$\equiv \Gamma_{KK} \qquad 1.28$$

Le calcul de Γ_{KK} nous informe sur l'absorption induite par collision sur toute la gamme de fréquence. Ainsi, en comparant nos résultats avec ceux trouvés dans l'infrarouge lointain et dans les micro-ondes on peut déduire la contribution de l'infrarouge. LISTE DES OUVRAGES CITES DANS L'INTRODUCTION ET DANS LE CHAPITRE I

- 1- L.Lorenz, Ann. Phys. <u>11</u>, 70 (1880).
- 2- H.A. Lorentz, Ann. Phys. 9, 641 (1880).
- 3- J.M. St-Arnaud et T.K. Bose, J. Chem. Phys, <u>68</u>, 2129 (1978).
- 4- R.Coulon, G.Montixi et R.Occelli, Can. J. Phys, <u>59</u>, 1555 (1981).
- 5- A.D. Buckingham et C.Graham, Proc.R.Soc.Lond.<u>A336</u>, 275 (1974).
- 6- R.M. Waxler et C.E. Weir, J. Res.Natl.Bur.Std, <u>A67</u>, 163 (1963).
- 7- R.M. Waxler, C. E. Weir et H.W. Schamp, Jr., J. Res.Natl. Bur.Std, <u>A66</u>, 489 (1964).
- 8- K.Vedam et P.Limsuwan, J. Chem. Phys. <u>69</u>, 4762 (1978).
- 9- K.Vedam et P.Limsuwan, J. Chem. Phys. <u>69</u>, 4772 (1978).
- 10- K.Vedam et P.Limsuwan, Rev. Sci. Instrum. <u>48</u>, 245 (1977).
- 11- K.Vedam et P.Limsuwan, J. Chem. Phys. <u>73</u>, 4577 (1980).
- 12- O.F. Mossotti, Men. Mathem. Fisica. Madena 24, 49 (1850).
- 13- R.Clausius, "Die Mechanische Wärmetheorie", Vol.II, Braunschweich <u>62 (</u>1879).
- 14- J. Yvon, J. Actualités scientifiques et industrielles,
 Nos. 542 et 543, Paris, (1937).
- 15- J.G. Kirkwood, J. Chem. Phys. 4, 592 (1936).
- 16- C.J.F. Böttcher, "Theory of Dielectric Polarization",

Vol.I (Elsevier, Amsterdam, 1973).

- 17- Référence [16] pp.167
- 18- H.S. Gabelnick and H.L. Strauss, J. Chem. Phys. <u>46</u>, (1968).
- 19- J.C. Maxwell, Phil. Trans. <u>155</u> (1865) 459, Ibid. <u>158</u> (1868) 643, "Treatise on Electricity and Magnetism", Dover, New York (1954).
 - 20- Référence [16] pp. 179.
- 21- W.F. Brown, Jr., in Handbuch der Physik, edited by S. Flugge (Springer, Berlin, 1956), Vol, 17, op. 74.
- 22- M. Omini, Physica <u>83A</u>, 431 (1976); <u>84</u>, 129, 492 (1976).
- 23- M. Omini, J. Phys. <u>39</u>, 847 (1978).
- 24- L. Jansen et P. Mazur, Physica <u>21</u>, 193, 208 (1955).
- 25- J.De Boer, F. Vander Moessen et C.A. ten Seldam, Physica, <u>19</u>, 265 (1953).
- 26- D.B. Dupré et J.P. McTague, J. Chem. Phys. <u>50</u>, 2024 (1969).
- 27- S.R. de Groot et C.A. ten Seldam, Physica (Ultrechet) <u>13</u>, 47 (1947); <u>18</u>, 906, 910 (1952).
- 28- D.R. Bosomworth and H.P. Gush, Can. J. Phys. <u>43</u>, 751 (1965).
- 29- T.K. Bose, dans "Phenomena Induced by Intermolecular Interactions". Edité par G. Birnbaum (Plenum Publishing Corporation, 1985).

CHAPITRE II

METHODOLOGIE EXPERIMENTALE

INTRODUCTION

En raison des objectifs poursuivis dans nos travaux, nous avons choisi de mesurer avec le maximun de précision la variation de l'indice de réfraction " Δ n" en fonction de la pression le long de diverse isothermes pour deux liquides non polaires. La pression maximale pour chaque liquide est inférieure à celle qui correspond au point de changement de phase à la température retenue.

Pour atteindre nos objectifs, nous avons opté pour une approche interférentielle basée sur l'interféromètre de Michelson. Un relevé de la littérature sur l'étude de l'indice de réfraction en fonction de la densité pour un liquide nous a permis de retenir deux approches différentes: celle de Waxler et Weir [1,2] et celle de Vedam et al [3-6]. Waxler et Weir ont mesuré "n" avec un interféromètre Fabry-Perot à diverses longueurs d'ondes dans le visible et à différentes températures. Leurs travaux datent de 1964. Par contre, les travaux récents de l'équipe de Vedam et al sont basés sur les anneaux de Newton. Ils furent réalisés pour une longueur d'onde de 546,0 nm avec des pressions allant jusqu'à 14 kbar. Ces chercheurs comptaient les franges visuellement.

Pour les mesures de Δ n en fonction de la pression, nous avons utilisé un interféromètre à laser constitué d'un interféromère Michelson et d'un laser He-Ne stabilisé. Cet appareil peut atteindre une résolution de 5 parties dans 10^7 et peut compter des franges de façon bi-directionnel. En conséquence, cet appareil peut annuler les effets Joule-Thompson suite à une variation de la densité dans un liquide si le montage est lui-même très stable en température.

Dans les lignes qui suivent, nous présentons d'abord les détails expérimentaux. Par la suite nous présenterons la méthode de calibration utilisée pour mesurer la pression. Nous montrerons comment nous avons tenu compte des déformations mécaniques et thermiques de la cellule optique. Nous présenterons les calculs de la densité à partir de nos mesures de pression. Le contrôle de la température en divers points du montage sera ensuite discuté. Nous terminerons en démontrant comment nous avons tenu compte de l'humidité.

2.1 METHODE EXPERIMENTALE

Pour mesurer la variation de l'indice de réfraction " Δ n" d'un liquide, nous plaçons une cellule de longueur initiale l_o dans un des bras de l'interféromètre de Michelson. Cette cellule est reliée au compresseur à l'aide d'une interface qui enveloppe le sac du liquide à étudier (voir figure 3.1 dans le chapitre III). Les valeurs de Δ n s'obtiennent à partir de la relation suivante:

$$\Delta n = \frac{\Delta k}{(1_0 + 2D_m + D_t)} \cdot \frac{\lambda}{4}$$
 2.1

où Δk est la variation du nombre de franges observé, λ (λ = 632.8 nm à la pression atmosphérique) est la longueur d'onde du laser utilisé, D_m est la déformation mécanique mesurée de la cellule et D_t est la déformation thermique calculée.

La première étape de l'expérience consiste à mesurer la déformation mécanique de la cellule. Cette mesure est faite à l'aide d'une nouvelle technique qu'on expliquera ciaprès (voir paragraphe 2.4.1). La deuxième étape consiste à mesurer l'indice de réfraction n_0 , à la pression d'un bar, du liquide étudié. La mesure se fait à l'aide d'un réfractomètre d'Abbe dont la résolution est d'environ 1×10^{-4} . Par la suite, on calcule la déformation thermique à l'aide de la relation [7]:

$$I(T) = I_R(1 + \beta \Delta T)$$
 2.2

où $\Delta T = T_m - T_R$ représente la différence entre la température de mesure " T_m " et celle de référence " T_R ", "l(T)" et "l_R" étant respectivement la longueur de la cellule à T_m et à T_R ; " β " est le coefficient de dilatation thermique de la cellule.

La troisième étape est la plus importante car elle comporte la mesure de Δn en fonction de la pression. Pour s'assurer de la reproductibilité des valeurs de Δn , on a pris plusieurs mesures tant en compression qu'en décompression sur la même isotherme. Puis, on fait des mesures de

 Δ n en fonction de la pression sur plusieurs isothermes pour examiner l'effet de la température sur la polarisabilité. Dès que Δ n est connue, on calcule la valeur exacte de l'indice de réfraction "n" définie par: $n = n_0 + \Delta n$. A l'aide de ces mesures, on peut vérifier le lien entre la polarisabilité et la pression. Finalement, on calcule la différence ($\varepsilon - n^2$), les valeurs de " ε " étant celles mesurées par Mopsik [8] aux mêmes températures et aux mêmes densités que les nôtres.

2.2 CALIBRATION DU MANOMETRE

Comme la pression est un des paramètres de base dans notre expérience, il était requis de connaître sa valeur la plus exacte. Nous avons calibré l'ensemble constitué du multimètre, de la source de tension et du capteur piézoélectrique par rapport au manomètre préalablement calibré par le fabricant "Dresser Industries" . Nous avons relié en série le manomètre, le multimètre et le capteur de pression (modèle AB de la compagnie Data Instruments). Puisque notre référence est la pression atmosphérique, on doit ajuster à zéro le potentiomètre pour avoir une lecture de référence nulle sur le millivoltmètre. Toute variation de pression sera indiquée sur le manomètre en livre par pouce carré (PSI). La calibration du capteur fut faite tant en augmentant qu'en diminuant la pression. On a pu ainsi vérifier que le capteur (pression maximale de 2.0 kbar) possédait une légère hystérèse comme le laisse voir la figure (2.1). Un traitement par la méthode des moindres carrés de la montée en pression et de la descente nous a permis de connaître la pression exacte pour toute lecture en millivolts. La précision sur le millivolt est de l'ordre de ± 0.01 mv, ce qui correspond à ± 2 PSI.

2.3 DEFORMATION DE LA CELLULE

La cellule utilisée est sujette à deux types de déformations: une déformation mécanique due à la variation de la pression et une déformation thermique causée par l'écart entre la température de référence et la température de mesure.

2.3.1 MESURE DE LA DEFORMATION MECANIQUE

Etant donné que nous mesurons des pressions allant jusqu'à 1,96 kbar, il faut considérer la déformation mécanique du corps de la cellule et celle des fenêtres optiques. Dans le cas des fenêtres optiques, la déformation peut être calculée à l'aide de plusieurs théories [9]. Les théories ont été élaborées à partir de l'hypothèse qui stipule qu'on a une plaque mince dont le rapport épaisseur/diamètre est inférieur ou égal à 0,1. Dans notre cas, les fenêtres optiques possèdent une épaisseur de 1,2530 cm (± 0,0005 cm) et un diamètre de 1,5570 cm (± 0,0005 cm), ce qui nous donne un rapport de 0,804. Cependant, une théorie avancée de Roark [10] suppose que le rapport épaisseur/ diamètre peut atteindre une valeur maximale de 0,25. Donc, il est évident que les calculs de la déformation selon les théories proposées seront erronés. Devant l'impossibilité de calculer exactement la déformation mécanique d'une fenêtre en saphir, nous avons préféré la mesurer avec l'interféromètre à laser.

Pour ce faire, une mince couche d'aluminium fut vaporisée sur la face externe de la fenêtre (du coté du laser) dans le but d'utiliser la fenêtre comme miroir de première surface pour notre interféromètre à laser. Nous installons le sous système cellule-interface (sans le sac) et augmentons la pression transmise par de l'huile légère qui remplit toutes les canalisations y compris l'interface et la cellule. La pression appliquée est en contact direct avec les fenêtres optiques. Pour éviter la contamination de l'aluminium par l'huile, nous avons mis le dépôt d'aluminium sur la face externe de la Fenêtre. A ce moment le parcours optique varie en fonction de la pression à cause de la déformation de la fenêtre optique et du corps de la cellule. Cette déformation est mesurée en supposant que les deux fenêtres optiques identiques ont la même déformation et que le corps de la cellule se déforme d'une manière symétrique par rapport à la médiane verticale à la cellule. La mesure (D_m) sera doublée pour tenir compte de la déformation réelle (équation 2.1).

La figure (2.2) montre la courbe de la déformation en fonction de la pression mesurée à la température de la pièce. Un traitement par la méthode des moindres carrés nous a

fonction de la pression.

permis de déterminer le polynôme associant la déformation (D_m) à la pression. Sur la figure (2.2), on remarque que la déformation mécanique n'est pas linéaire à basse pression ce qui diffère de la théorie qui suppose que la déformation est linéaire par rapport à la pression [9,10].

2.3.2 CALCUL DE LA DEFORMATION THERMIQUE

Ce type de déformation concerne la dilatation du corps de la cellule et des fenêtres optiques. Elle agit directement sur le parcours optique.

La théorie pour déterminer la déformation thermique d'un corps est bien connue [7] (voir équation 2.3). La température de la pièce est de 21,5 ± 0,3 °C (température de référence) et le coefficient de dilatation thermique de l'acier inoxydable de type S.S.440 est de $10,1\times10^{-6}$ cm/cm-°C. Celui du saphir (fenêtres optiques) est de $6,66\times10^{-6}$ cm/cm-°C [7]. La dilatation totale de la cellule D_t est donnée par la relation:

$$D_{t} = D_{c} - 2D_{f}$$
 2.3

où D_{c} représente la dilatation thermique du corps de la cellule et D_{f} celle d'une fenêtre optique. Le résultat des

TABLEAU 2.1

Déformations thermiques calculées pour les fenêtres optiques "D_F", du corps de la cellule "D_C" et la déformation totale "D_t".

	Déformation	thermique	(10^{-4} cm)
T(°C)	DC	D _f	D _t
00,0	- 2,53	- 1,79	1,05
25,0	0,41	0,29	- 0,17
50,0	3,36	2,38	- 1,38

La température de référence est 21,5 °C.

.

dilatations à différentes températures est donné au tableau (2.1). Notons que dans l'équation (2.3), la valeur négative associée aux fenêtres vient du fait que le parcours optique entre les deux fenêtres diminue puisque l'épaisseur des fenêtres augmente avec la température.

2.4 CALCUL DE LA DENSITE

La densité fut calculée à partir des mesures de pression. Pour ce faire, on a utilisé la relation proposée par Mopsik [8] pour les liquides étudiés et pour les mêmes isothermes que nos études. Cette relation qui couvre une gamme de pression allant de l'atmosphère à 2,0 kbar prend la forme suivante:

$$\frac{P d}{(d - d_0)} = k_0 + m P + n P^2 \qquad 2.4$$

où d_o en (g/cm^3) est la densité à la pression atmosphérique. k_o , m et n sont des constantes proposées par Mopsik [8] pour chaque liquide et pour chaque isotherme (voir tableau 2.2). L'équation (2.4) devient la réciproque de celle de Tait [8] lorsque n = 0. L'avantage de l'utilisation de l'équation

TABLEAU 2.2

Constantes de l'équation proposée par Mopsik [8] pour le calcul de la densité.

T (°C)	k (kbar)	m	n (kbar ⁻¹)		
Tétrachlorure du carbone					
00,0	12,446±0,250	3,004±0,592	_		
25,0	08,931±0,147	6,038±0,392	-0,923±0,241		
50,0	07,740±0,103	4,835±0,179	-0,353±0,071		
<u>Disulfure du carbone</u>					
00,0	12,544±0,173	5,108±0,282	-0,439±0,106		
25,0	10,684±0,141	4,600±0,232	-0,283±0,088		

(2.4) est qu'elle possède des coefficients linéaires. Par conséquence, une technique ordinaire tel que le programme des moindres carrés peut être utilisé. Les résultats obtenus lors de ce calcul seront indiqués aux tableaux du chapitre IV intitulé " Résultats expérimentaux".

LISTE DES OUVRAGES CITES DANS LE CHAPITRE II

- 1- R.M. Waxler et C.E. Weir, J. Res.Natl.Bur.Std.Sect.<u>A67</u>, 163 (1963).
- 2- R.M. Waxler, C.E. Weir et H.W. Schamp, Jr., J. Res.Natl. Bur.Stand.Sect.<u>A66</u>, 489 (1964).
- 3- K.Vedam et P.Limsuwan, J. Chem. Phys. <u>69</u>, 4762 (1978).
- 4- K.Vedam et P.Limsuwan, J. Chem. Phys. <u>69</u>, 4772 (1978).
- 5- K.Vedam et P.Limsuwan, J. App. Phys. <u>50</u>, 1328 (1979).
- 6- K.Vedam et P.Limsuwan, J. Chem. Phys. <u>73</u>, 4577 (1980).
- 7- Handbook of Chemistry and Physics, 60^{ième} édition, Chemical Rubber Co, Boca Raton (1984).
- 8- F.I.Mopsik, J, Chem. Phys. <u>30</u>, 2559 (1969).
- 9- S. Timoshenko, "Theory of Plates and Shells". McGraw-Hill, Book Co, New York, NY. (1940).
- 10- R.J. Roak. Formulas for Stress and Strain. McGraw-Hill, Book Co., New York, NY. (1965).

CHAPITRE III

EQUIPEMENT EXPERIMENTAL

3.1 DESCRIPTION DU MONTAGE

Le montage expérimental comprend deux parties principales: un système de mesure basé sur l'interféromètre de Michelson et un ensemble de compression comprenant la cellule optique, l'interface et le compresseur. Nous illustrons ce montage sur la figure (3.1).

Le sous-système cellule-interface est fixé solidement dans une enceinte à température contrôlée. Le faisceau lumineux émis par le laser fait un parcours aller-retour, grâce à un réflecteur à prisme trilatérale (cube corner), sur un seul axe à travers la cellule optique dont les fenêtres sont en saphir. La pression, générée par le compresseur, est mesurée entre 1 bar et 2 kbar par un capteur de pression (modèle AB de Data Instruments) et entre 1 bar et 6,6 kbar par un manomètre de 16 pouces de diamètre (de type Heise). La résolution du capteur est 0,2 bar et celle du manomètre est de 3,5 bar (50 psi).

3.2 DESCRIPTION DES COMPOSANTES

3.2.1 INTERFEROMETRE A LASER

L'interféromètre à laser utilisé est le modèle H.P-5501A d'Hewlett-Packard [1,2], qui est composé de deux parties principales: l'interféromètre de Michelson et le laser.

3.2.1.1 L'INTERFEROMETRE

Pour mesurer avec une très grande précision les déplacements, on utilise généralement des interféromètres basés sur la nature ondulatoire de la lumière. Dans ce cas leur fonctionnement s'appuie sur l'interférence optique d'une onde monochromatique. Le comptage des franges d'interférence permet de mesurer soit le déplacement d'un mobile (récepteur) par rapport à un émetteur (laser), soit l'indice de réfraction d'un milieu si le récepteur (miroir) est fixe. La plupart des interféromètres sont de type à modulation d'amplitude dont le plus répandu est le Michelson. Un compteur électronique (HP-5505A) affiche le nombre de franges (k) localisé. Ce compteur dénombre, sous forme numérique, le défilement des franges, au point de superposition, et ce dans l'une ou l'autre direction du déplacement ou de la variation d'indice. Par ce fait, on n'ajoute pas de franges en raison des fluctuations thermiques qui sont produites lors la variation de la pression. Notons que, la différence du chemin optique est produite, dans notre cas, par la variation de la densité du milieu dans un des bras de l'interféromètre, le réflecteur étant fixe sur le montage.

Connaissant la longueur de la cellule optique "L", la longueur d'onde principale " λ " et le nombre de frange "k" on déduit généralement l'indice de réfraction du milieu "n" par la relation:

$$n - 1 = k \cdot \lambda / 2 L \qquad 3.1$$

3.2.1.2 LASER

La source de lumière utilisée est un laser héliumnéon de faible puissance, qui émet une lumière cohérente dans le visible. Un champ magnétique appliqué dans l'axe du faisceau laser produit par l'effet Zeeman [3] deux fréquences optiques très voisines, situées de part et d'autre de la raie naturelle du néon. Ces deux fréquences ont des polarisations circulaires inverses. La différence entre ces deux longueurs d'onde est de 2,5x10⁻⁹ microns, soit 1,8 MHz (voir figure 3.2).

Figure (3. 2): Faisceau à double fréquence à la sortie du laser.

3.2.2 PRINCIPE DE FONCTIONNEMENT DE L'INTERFEROMETRE A LASER

Pour réduire au minimum l'influence de la turbulence atmosphérique sur le faisceau, il y a un mélange de deux signaux optiques de fréquences légèrement différentes (f_{1 et} f₂). Après élargissement et collimation, une partie du faisceau est déviée vers une photodétectrice de référence comme le laisse voir la figure (3.3). Cette partie du faisceau est utilisée pour fournir un signal de référence. A l'entrée de l'interféromètre, sur la séparatrice, une autre partie du faisceau à double fréquence est dirigée vers le prisme trilatéral interne dans le bras fixe du Michelson. Grâce à un filtre polarisant, la fréquence f₂ est conservée dans ce bras. Le signal, porteur de la fréquence f₁, transmis par la séparatrice se dirige vers le prisme trilatéral du second bras après avoir traversé un autre filtre polarisant. Les signaux réfléchis (f₁ $\pm \Delta f_1$ et f₂) se recombinent sur la séparatrice dans un point commun où ils interfèrent. La séparatrice dirige les signaux superposés $(f_1 + f_2 \pm \Delta f_1)$ vers la photodétectrice de mesure. Tout mouvement du réflecteur mobile ou toute variation de la densité du milieu fait apparaître une différence de fréquence (± Δ f $_1$) dans le signal réfléchi par suite de l'effet Doppler. Le signal capté par la photodétectrice de mesure est amplifié pour fournir un signal de mesure. L'information transmise par la photo-

Figure 3. 3: Illustration du principe de fonctionnement de l'interféromètre-laser.

détectrice de mesure est comparée à celle captée par la photodétectrice de référence. Les signaux sont doublés et comptés dans un compteur réversible puis dirigés dans un soustracteur. Se dernier comparera les signaux cycle par cycle. Un accroissement ou une diminution du chemin optique produira des comptes nets positifs ou négatifs du nombre de franges. Le même effet se produira lors d'une variation de la densité. Le compte résultant est transmis ensuite à un calculateur qui convertit le signal en diverses unités de mesure et assure l'affichage numérique. Finalement, un enregistreur numérique (HP-5055A) permet de conserver nos mesures expérimentales. L'interféromètre à laser est conçu pour une résolution maximale de 5 parties dans 10'.

3.2.3 ENCEINTE DE LA CELLULE-INTERFACE

L'enceinte du sous système cellule-interface est une boîte parallélépipèdique de 60,5 cm de longueur, 39,4 cm de largeur et de 39,4 cm de profondeur. Elle est construite en aluminium de 1,3 cm d'épaisseur. La partie supérieure comporte un couvert boulonné que l'on enlève pour l'insertion de la cellule et de l'interface. On y a aménagé diverses ouvertures pour permettre le passage des tuyaux, des contrôleurs de température et du fil de la sonde pour indiquer la température de la cellule optique (fixée sur la surface de la cellule). D'autre petites ouvertures

circulaires servent à amortir le choc du claquage de la cellule, à haute pression, s'il y a lieu.

Cet ensemble possède trois orifices, un du coté du compresseur à travers lequel passe le tube d'huile liant le compresseur et l'interface. Les deux autres sont placés symétriquement. L'un permet le passage du faisceau lumineux et l'autre sert à la réflexion de ce dernier grâce à un réflecteur. Pour assurer un alignement optimum des fenêtres, la cellule et l'interface sont disposées sur un support en forme de "V" fixé à la base interne de l'enceinte. Ce support est à son tour fixé à la table de granit et aligné avec une très grande précision. Soulignons que l'axe de révolution de la cellule forme un plan horizontal avec celui de l'interface et coïncide avec l'axe du faisceau lumineux.

3.2.4 CELLULE OPTIQUE

La cellule optique (voir figure 3.4) est fabriquée en acier inoxydable de la série (400). Ses dimensions sont 19,05 cm de long, 11,43 cm pour le diamètre externe et 2,52 cm pour le diamètre interne. Elle a été soumise à un traitement thermique tel qu'elle peut supporter une pression optimale de 9,0 kbar. Elle comprend deux fenêtres en saphir

(A) séparées par un espaceur. Ces deux fenêtres sont bien orientées pour tenir compte de la polarisation du faisceau laser. Les deux fenêtres sont solidement maintenues par un support (B) qui est à son tour bien retenu par un bouchon (C). La longueur entre les deux fenêtres, mesurée avec un micromètre de résolution $2,10^{-4}$ cm, est de $1,1676 \pm 0,0005$ cm aux conditions normales (à la pression atmosphérique et à la température de la pièce, soit $21,5^{\circ}$ C). Cette longueur est corrigée en tenant compte de la dilatation thermique et de la déformation mécanique (voir section 2.3).

3.2.4.1 ESPACEUR

C'est une pièce métallique en acier inoxydable ayant la forme d'une rondelle épaisse percée au centre. Cette rondelle comprend quatre trous percés suivant deux axes perpendiculaires le long de l'épaisseur. Elle est placée entre les deux fenêtres optiques pour deux raisons essentielles:

a) diminuer le volume du liquide mesuré,

b) permettre que la diffusion du liquide, lors de la compression, soit uniforme dans la cellule. Dans un tel cas, l'alignement du faisceau demeure plus stable durant

l'expérience car les perturbations sont distribuées dans tout le volume et non seulement sur l'axe du faisceau lumineux.

3.2.4.2 FENETRES OPTIQUES

Les fenêtres optiques utilisées sont en saphir $(A1_{20_3})$. Leur transparence se situe entre les longueurs d'ondes 6.5 et 0.17 µm [4]. Le saphir a l'avantage d'être un matériel dur. En effet, son module de rigidité est de l'ordre de 2,15 x 10^7 psi. On peut ainsi travailler à haute pression sans risque de rupture de la fenêtre. De plus, son changement d'indice de réfraction en fonction de la pression est presque nul. Le seul inconvénient de ce type de fenêtres est que le saphir est actif du point de vu optique. En effet, pour s'assurer que les fenêtres ne modifient pas la polarisation du faisceau, l'axe C de la fenêtre optique doit coïncider avec celui de la direction de la compression, c'est-à-dire que l'axe C du saphir doit être dans la direction du faisceau laser. Nous avions des fenêtres possédant cette caractéristique.

3.2.5 INTERFACE

Cette pièce est fabriquée en "ULTIMO", un acier oxydable. Grâce à elle, on peut établir le lien entre la cellule optique et le compresseur comme le laisse voir la figure (3.5). Elle a 17,5 cm de longueur, un diamètre externe

Figure(3.5): Coupe de l'interface; ---:huile de compression ...:liquide à étudier.

de 8,0 cm et un diamètre interne de 1,72 cm. A l'intérieur de cette interface il y a une petite chambre contenant l'huile de compression et un sac. Ce dernier, en polyéthylène, sépare le fluide compresseur (l'huile) du liquide à étudier. Grâce à sa faible épaisseur (0,05 mm) et à sa malléabilité, le sac garanti la transmission intégrale de la pression. Pour éviter toutes fuites du liquide, le sac est bien retenu sur une matrice par deux rondelles d'étanchiété.

3.2.6 QUALITE DES LIQUIDES ETUDIES

Les liquides obtenus de Fisher Scientific Canada (certifié et spectranalysé) sont utilisés sans aucun additif ni purification. Les analyses spectrométriques types, donnés par le fournisseur, indiquent les concentrations des impuretés suivantes:

-CS₂ : (H₂O: 0,05%, H₂S: 1,5ppm, SO₂: 2,5ppm) -CC1₄ : (H₂O: 0,02%, C1: 2ppm, Cu: 0,1ppm, Fe: 0,1ppm, Ni: 0,1ppm)

3.2.7 TABLE DE GRANIT

La table de granit sur laquelle repose le montage à une forme rectangulaire de 125,0 cm par 60,8 cm avec un épaisseur de 5,8 cm. Cette table est munie d'un système de suspension automatique qui en plus de réduire les vibrations, sert à maintenir la table à un niveau constant. Il est constitué de quatre sacs pneumatiques. Chaque sac peut être gonflé ou dégonfé indépendamment dans le but de compenser les vibrations autour de son espace. De cette manière la table sera maitenue à un niveau pré-établi.

La majorité des vibrations externes sont atténuées et ne perturbe guère l'interféromètre. En effet, des essais nous ont permis de vérifier que l'interféromètre à laser n'enregistre aucune vibration nuisible à nos mesures.

3.2.8 COMPRESSEUR

A l'entrée du compresseur, se trouve un régulateur qui permet de choisir la pression maximale d'air. Par ce fait, on contrôle la pression maximale d'huile à la sortie du compresseur. Pour augmenter la pression dans ce compresseur, on ouvre dans un premier temps la valve "B", la valve de sortie du compresseur ainsi que celle d'entrée. On ferme la valve "C" et celle d'évacuation (voir figure 3.6).

La pompe opérera jusqu'à une pression de sortie de 10 000 PSI. Si une augmentation supplémentaire est désirée alors on doit ouvrir la valve "C" et fermer la valve "B". A

1

Figure (3.6) Schéma de fontionnement du compresseur

ce moment la pompe comprimera jusqu'à 100 000 PSI à la sortie.

3.3 FACTEURS INFLUANCANT L'INDICE DE REFRACTION

L'indice de réfraction est le paramètre principal sur lequel notre expérience est basée. Donc on doit contrôler la majorité des facteurs qui peuvent l'influencer soit implicitement soit explicitement. Ces facteurs sont, par ordre d'importance la température, la pression et l'humidité du milieu.

3.3.1 CONTROLE DE LA TEMPERATURE

3.3.1.1 ENCEINTE DE LA CELLULE ET L'INTERFACE

La température de la cellule et de l'interface est contrôlée grâce à un système d'enroulement autour de la cellule et de l'interface, de tuyaux en cuivre souple et qui maintient la température désirée. Le fluide circulant dans la tubulure provient d'un bain à température contrôlée (Lauda, modèle RSK-20). L'entrée et la sortie de cette tubulure sont reliées au bain. La plage de variation de la température de ce dernier s'étend de -40 °C à +150 °C, avec une précision de
0,02 °C. Le liquide utilisé dans ce contrôleur est un mélange (50% - 50%) d'éthylène glycol et d'eau. En outre, la cellule et l'interface sont enveloppées par une matière isolante (laine de verre), ainsi que tous les tubes de circulation entre le bain et l'enceinte.

·

3.3.1.2 ENCEINTE DE L'INTERFEROMETRE DE MICHELSON

L'enceinte de l'interféromètre de Michelson comprend l'interféromètre et la cellule photodétectrice qui sont disposées dans une boîte en plastique dont les parois internes sont isolées par du papier d'aluminium. La température à l'intérieur de cette boîte est contrôlée à l'aide d'un contrôleur proportionnel (voir tableau 3.4). Au voisinage du faisceau, une sonde à résistance de platine et deux ampoules électriques de 25 watts chacune sont disposées à l'intérieur de la boîte. Ces dernières constituent le chauffage qui maintient la température à 25,0 ± 0,5 °C.

3.3.1.3 PIECE

Pour que le comptage de franges soit le plus stable possible, nous avons jugé nécessaire de contrôler la température de la pièce. Les mesures furent effectuées à une

température de 21,5 ± 0,5 °C. Par conséquence, les effets dûs aux fluctuations thermiques de la pièce furent éliminées ou réduites au minimum.

Pour la lecture des températures contrôlées, nous avons utilisé un thermomètre numérique à résistance de platine dont la résolution et la précision sont de 0,01 °C et 0,05 °C respectivement. Ce thermomètre a été calibré par rapport à un thermomètre au quartz (HP-2801A) de grande résolution (0,0001°C).

3.3.2 HUMIDITE

Le faisceau lumineux circule dans la pièce sur une distance d'environ 4,4 cm avant de pénétrer dans l'enceinte de la cellule-interface. Nous ne pouvions contrôler l'humidité dans notre pièce. Cependant, par des lectures fréquentes sur un hygromètre et un baromètre, nous avons apporté les modifications requises sur les comptes en insérant périodiquement les corrections dans l'interféromètre doté d'un système de compensation automatique pour les variations de pression et d'humidité.

3.4 PRINCIPAUX APPAREILS UTILISES AU COURS DE L'EXPERIENCE

-Baromètre à mercure de type Fortin, modèle S40743, Fisher. -Capteur de pression, modèle AB de la compagnie DATA

Instruments.

- -Compresseur mécanique, modèle PS-100 (HIP) of Hight Pressure Equipment Company.
- -Contrôleur de température à circulation externe, modèle RKS20 de la compagnie LAUDA.
- -Contrôleur de température "arrêt-marche" modèle YSI-71A, pour régulariser la température de la pièce à 21,5 ± 0,5°C. -Contrôleur proportionnel de température, modèle YSI-72 pour

l'enceinte du Michelson.

- -Détecteur de pression (manomètre), de la compagnie "HEISE", Modèle 36736, (16 pouces de diamètre).
- -Réfractomètre type d'ABBE de la compagnie Bausch et Lomb, avec une résolution de 1 par 10^{-4} .
- -Thermomètre numérique à résistance de platine, modèle 8502-02, Cole-Palmer, résolution de $\pm 0,01^{\circ}$ C.
- -Valves, modèles 44-13106 ou 44-13121, American Instruments Company.

LISTE DES OUVRAGES CITES DANS LE CHAPITRE III

- 1- A.F. Rude et M.J. Ward, Hewlett-Packard Journal, <u>27</u>,2 (1976)
- 2- G.Stouder, Revue Polytch. Suisse, N_o 1410, 437 (1981).
- 3- G.Bruhat, "Physique Générale (Optique)". Masson, Paris (1959).
- 4- Materials, Willow Run Laboratories. Dpt of commerce, Publication 181-087, U.S. University of Michigan.

CHAPITRE IV

RESULTATS EXPERIMENTAUX

INTRODUCTION

Pour étudier l'équation de Lorentz-Lorenz, il faut connaître l'indice de réfraction "n" du liquide pour chaque valeur de la densité "d". Nous calculons la densité à partir de l'équation (2.4) en utilisant les mesures de la pression. La valeur de "n" est obtenue avec deux mesures différentes. Dans un premier temps, une mesure de "n₀" est faite à la pression atmosphérique. Par la suite, la variation de l'indice " Δ n" est mesurée en fonction de la pression.

4.1 MESURE DE n

L'indice de réfraction à une atmosphère de pression et à une température donnée est mesuré à l'aide d'un réfractomètre de type d'ABBE de la compagnie Bausch et Lomb. On obtient l'indice de réfraction d'un liquide pour la longueur d'onde de la raie D sodium. Puis à l'aide de la relation (4.1), on calcule la valeur de l'indice de réfraction du liquide pour la longueur d'onde du laser He-Ne (632,8 nm).

$$n_{x} = A + B / \lambda_{z}^{2}$$
 4.1

où n_x est l'indice de réfraction correspondant à la longueur d'onde λ_x , A et B sont des coefficients qui sont déterminés à partir des tables de dispersion fournies dans le manuel de fonctionnement du réfractomètre.

Les résulats de n_o, à λ = 632,8 nm pour les liquides CCl₄ et CS₂, sont regroupés dans le tableau (4.1). On y retrouve aussi quelques valeurs de comparaison à la même longueur d'onde et pour d'autres longueurs d'onde.

Dans le tableau (4.1), les valeurs qui portent le signe (*) sont des valeurs calculées à partir du rapport des variations de l'indice de réfraction et de la température $(\Delta n/\Delta T)$ (voir exemple de calcul dans l'appendice A). On remarque, dans ce tableau (4.1), que la valeur de l'indice de réfraction décroît au fur et à mesure que la longueur d'onde augmente ce qui concorde avec la relation (4.1) où l'indice de réfraction est inversement proportionnel au carré de la longueur d'onde.

Indice de réfraction $\binom{n_0}{0}$ du CCl₄ liquide et du CS₂ liquide à la pression atmosphérique pour différentes températures et différentes longueurs d'onde.

· · ·		CCI4		CS ₂	
- T (°C)	0,0	25,0	50,0	0,0	25,0
(nm)		-			
435,83 ^(a)		1,4693	1,4538		
492,19(b)		1,4640			
589,26(a)		1,4573	1,4421	·	
632,8 (⊂)	*1,4701		*1,4416		
(b)	*1,4712	1,4567	*1,4425	*1,6437	1,6237
(e)					1,6200
(f)	1,4709	1,4559	1,4404	1,6371	1,6169
667,82(b)		1,4547			

 n_{o} (± 0,0005)

* valeurs calculées à partir de celles du rapport $(\Delta n / \Delta T)$ tiré des références c et d. a:réf 1, b:réf 2, c:réf 3, d:réf 4, e:réf 5. f: les mesures de ce travail.

4.2 MESURE DE LA VARIATION DE L'INDICE DE REFRACTION

Avant de mettre en place le sous-système interfacecellule, il faut d'abord enlever toutes les bulles d'air accumulées dans le sac en utilisant une technique que nous avons développée. Dans une première étape (voir la figure 4.1), nous remplissons le sac inférieur avec une seringue ayant une très longue tige flexible en nylon. Nous déposons le liquide dans le fond du sac et le remplissons lentement en prenant soin qu'il y ait peu de bulles d'air sur les paroies. Par la suite, nous attachons le sac à la cellule et remplissons, avec la même seringue, la cellule optique. Pour s'assurer qu'il n'y ait point de bulles dans le système, nous attachons à la cellule un second sac plein (voir la figure 4.1). En ouvrant la valve entre les cellules et le sac supérieur, nous pressons légèrement le sac inférieur pour enlever toute bulle d'air dans ce sac et dans la cellule. les réfugient dans le sac supérieur. Une fois bulles se l'opération terminée, on ferme la valve et on enlève le sac supérieur.

Figure (4.1): Le système utilisé pour enlever les bulles d'air

Une fois ceci réalisé on place le sous-système dans l'enceinte et on le fixe dans sa base. Ensuite, on enlève aussi les bulles d'air accumulées dans l'huile contenue dans l'interface.

Pour prendre les mesures, on varie la pression au rythme approximatif de 0,01 mv par seconde (2 psi.sec⁻¹) afin de ne pas perdre l'alignement du faisceau. Ainsi, toute variation de pression entraîne une modification de la densité du liquide et donne lieu à un changement dans le chemin optique. Le compteur affiche ce changement sous forme de nombre de frange (Δk) en multiple de $\lambda/4$.

Les mesures statiques de Δk en fonction de la pression, sont prises à des intervalles de 500 psi (5,5 mv) après avoir atteint une grande stabilité (± $\lambda/4$) dans le compte (annulation de l'effet Joule-Thompson). La pression maximale de départ est de 1,96 kbar.

La variation de l'indice de réfraction est calculée de la relation:

$$\Delta n = \frac{\Delta k}{(l_0 + 2D_m + D_t)} \frac{\lambda}{4}$$
4.2

où " λ " est la longueur d'onde de la source de lumière utilisée et "l_o" est la longueur de la cellule aux conditions initiales (P = 1 bar, T = 21,5 °C), D_m et D_t sont les déformations mécanique et thermique de la cellule (voir la section 2.3).

4.3 <u>CALCUL DE L'INDICE DE REFRACTION "n" ET DE L'EQUATION DE</u> LORENTZ-LORENZ

4.3.1 CALCUL DE L'INDICE DE REFRACTION

Connaissant la valeur de " n_0 " et la variation Δn suivant l'équation (4.2), on déduit la valeur de l'indice de réfraction en fonction de la pression selon la relation:

$$n = \Delta n + n_0 \qquad 4.3$$

Les mesures de n en fonction de la pression, pour le liquide CCl_4 , sont rapportées aux tableaux (4.2), (4.3) et (4.4) respectivement pour les isothermes T =0,0 °C, T =25,0 °C et T =50,0 °C. La mise en graphique de "n" en fonction de la pression pour ces trois isothermes est montrée sur la figure (4.2).

Pour le CS_2 , on présente les résultats aux tableaux (4.5), (4.6) respectivement aux isothermes T=0,0 °C et T=25,0

TABLEAU 4.2

Valeurs numériques de l'indice de réfraction (n) et de l'équation de Lorentz-Lorenz modifiée L-L(m) pour le liquide CCl_4 à T=0,0°C.

PPESSION (MPA)	BENSITE(HOPSIK) G/(CM**3)	N .	L-L(M)
PPESSION (MPA) .10+07 .52+07 1.50+07 1.50+07 2.61+07 4.24+07 4.24+07 4.24+07 4.49+07 6.35+07 7.95+07 8.70+07 9.58+07 12.51+07 12.51+07 17.00+07 17.00+07 17.00+07 23.04+07 26.88+07 34.04+07 37.72+07	DENSITE(HOPSIK) G/(CM**3) 1.6344 +0005 1.6349 +0005 1.6362 +0005 1.6365 +0005 1.63770005 1.63770005 1.6398 +0005 1.6401 +0005 1.6425 +0005 1.6446 +0005 1.6455 +0005 1.6466 +0005 1.6592 +0007 1.6634 +0008 1.6681 +0009 1.6766 +0012 1.6810 +0012	N 1.4709 \pm 0005 1.4710 \pm 0005 1.4715 \pm 0005 1.4715 \pm 0005 1.4715 \pm 0005 1.4721 \pm 0005 1.4728 \pm 0005 1.4728 \pm 0005 1.4738 \pm 0005 1.4745 \pm 0005 1.4745 \pm 0005 1.4745 \pm 0005 1.4753 \pm 0005 1.4785 \pm 0005 1.4785 \pm 0005 1.4785 \pm 0005 1.4810 \pm 0005 1.4854 \pm 0005 1.4868 \pm 0005 1.4868 \pm 0005	L-L(M) 26.301 +025 26.301 +025 26.304 +025 26.305 +025 26.309 +025 26.309 +025 26.311 +025 26.313 +025 26.313 +025 26.317 +025 26.317 +025 26.319 +025 26.320 +026 26.320 +026 26.320 +027 26.318 +028 26.314 +029 26.310 +030 26.310 +031
41.30+07 44.75+07	1.6351 +0014 1.6891 +0015	1.4882 +0005	26.303 +032 26.302 +034
47.40+07 51.90+07 54.92+07	1.6943 +0018 1.6971 +0019 1.7005 +0020	1.4911 +0005 1.4919 +0005 1.4930 +0005	26.298 +038 26.290 +037 26.288 +039
61.68+07 65.09+07	$\begin{array}{c} 1.7041 & 40022 \\ 1.7079 & 40024 \\ 1.7116 & 40026 \end{array}$	1.4953 +0005 1.4954 +0005	26.286 +041 26.278 +044 26.271 +046

TABLEAU 4.3

Valeurs numériques de l'indice de réfraction (n) et de l'équation de Lorentz-Lorenz modifiée L-L(m) pour le liquide CCl₄ à T=25,0°C.

		· · · · · · · · · · · · · · · · · · ·	· .
PRESSION	DENSITE(MOPSTK	N	
(MPA)	G/(CM**3)		L-L(M)
	\$		
5.93+07	1.5946 40005	1.4586 +0005	25.353 +025
10,29+07	1.6017 +0005	1.4507 +0005	26,337 4027
13.09+07	1.6061 +0006	1.4624 +0005	26.351 +027
16.61+07	1.6115 +0006	1.4543 +0005	24.358 +027
20.19+07	1.5167 +0007	1.4658 +0005	26.343 +027
23,70+07	1.6217 +0008	1.4576 +0005	26.350 1028
27.18+07	1.6266 +0009	1.4692 +0005	25.350 +028
30.77407	1.6314 +0010	1.4707 +0005	26.344 +025
34.29+07	1.5360 +0011	1.4722 +0005	26.341 +030
37.89+07	1.6405 +0012	1.4737 +0005	26.338 +031
41.39+07	1.3449 +0013	1.4751 +0005	26.336 4032
45.00+07	1.6472 +0014	1.4765 +0005	26.330 +033
48.49+07	1.6533 +0016	1.4781 40005	26.343 +035
51.98+07	1.6573 +0017	1.4796 +0005	26.348 1036
55.59+07	1.3314 +0019	1.4809 +0005	26.345 +038
59.09+07	1.6653 +0020	1.4322 +0005	26.343 +040
59,09+-,07	1.6653 +0020	1.4822 +0005	25.343 +040
62,70+-,07	1.6692 +0022	1.4834 +0005	26.337 4042
66.20+07	1.6729 +0024	1.4846 +0005	26.337 +044
69.69+07	1.6765 +0026	1.4353 +0005	26.335 +047
73.29+07	1.6802 +0028	1.48700005	26.331 +049
76,79+07	1.6837 +0030	1.4831 +0005	26.328 1052
80.40+07	1+6873 +-+0032	1.4894 +0005	26.331 4055
83.90+07	1.6907 +0034	1.4905 +0005	26.329 +058
87.40+07	1.3941 +0033	1.4916 +0005	26.327 +061
90.95+07	1.6975 +0038	1.4927 +0005	26.320 +064
94.49+07	1.7003 +0041	1.4935 +0005	26.306 +038
98.09107	1.70-1 +0043	1.4945 +0005	26.301 +071
101.68+07	1.7074 +0046	1.4956 +0005	26.298 +075
105.10407	1.7106 +0049	1.4965 +0005	26,293 +079
108.59 +07	1.7138 +0052	1.4976 +0005	26.294 +083
112.19+07	1.7169 +0055	1.4987 +0005	26,296 +087
115.3007	1.7201 +0058	1.4998 +0005	26.293 +091
119.40+07	1.7233 +0061	1.5008 +0005	26.285 +096
122.30+07	1.7262 +-:0064	1.5016 +0005	25.282 +100
126.37107	1.7293 +0067	1,5026 +-,0005	26.278 +105

Suite du tableau 4.3

	A			
129.89+07	1.7323 +0071	1.5036 +0005	25.278	+110
133.49+07	1.7354 +0074	1.5046	26.275	+115
136.99+07	1.73840078	1.5055 +0005	25.270	+120
140.50+07	1.7414 +0082	1.5065 +0005	26.266	+126
144.09+07	1.7444 +0085	1.5073 +	26.257	+131
147.59+07	1.7474 +	1.5082 +0005	26.251	+~.137
151.09+07	1.7503 +0094	1,5091 +0005	25.245	+143
154.70+07	1.7533 +0099	1.51000005	26.239	+145
158.20+07	1,7562 +0103	1.5109 40005	25.234	+156
161.79+07	1.7593 +0108	1.5117 +0005	26.225	+162
165.29+07	1.7622 +0113	1.5125 +0005	26.217	11.59
168.79+07	1.7651 +0117	1.5134 +0005	26.213	1176
172.39+07	1,7631 +0123	1.5144 +0005	25.208	+133
175,90+07	1,7710 +-,0128	1.5153 +0005	26.204	+191
179.50+07	1.7741 +0133	1.5161 +0005	26.194	+179
182,99+~,07	1.7770 +0139	1.5169 +0005	26.185	+206
185.49407	1.7799 +0145	1.5177 +0005	26.175	+214
190.09+07	1.7830 +0151	1.5185 +0005	26.166	4220
193.40+07	1.7357 +0157	1.5194 +0005	25.158	····.231
196.50+	1.7884 +0162	1.5199 +0005	26.144	+239
	1		•	

.

.

.

TABLEAU 4.4

Valeurs numériques de l'indice de réfraction (n) et de l'équation de Lorentz-Lorenz modifiée L-L(m) pour le liquide CCl_4 à T=50,0 °C.

PRESSION (MPA)	DENSITE(MOPSIK) G/(CM**3)	N .	L-L(M)
$\begin{array}{r} PRESSION \\ (MPA) \\ & .10+07 \\ .38+07 \\ .66+07 \\ 1.08+07 \\ 1.08+07 \\ 1.50+07 \\ 1.50+07 \\ 2.22+07 \\ 2.22+07 \\ 2.50+07 \\ 3.49+07 \\ 3.49+07 \\ 3.99+07 \\ 3.99+07 \\ 5.20+07 \\ 5.68+07 \\ 7.04+07 \\ 7.04+07 \\ 7.04+07 \\ 7.50+07 \\ 15.73+07 \\ 15.73+07 \\ 15.73+07 \\ 15.73+07 \\ 15.73+07 \\ 23.42+07 \\ 23.42+07 \\ 29.90+07 \\ 33.75+07 \\ 37.11+07 \\ 40.63+07 \\ 44.03+07 \end{array}$	$\begin{array}{c} 0ENSITE(MOPSIK)\\ G/(CM**3)\\ \hline \\ 1.5358 +0005\\ 1.5363 +0005\\ 1.5369 +0005\\ 1.5369 +0005\\ 1.5385 +0005\\ 1.5385 +0005\\ 1.5405 +0005\\ 1.5405 +0005\\ 1.5424 +0005\\ 1.5424 +0005\\ 1.5441 +0005\\ 1.5444 +0005\\ 1.5445 +0005\\ 1.5445 +0005\\ 1.5465 +0005\\ 1.5519 +0005\\ 1.5583 +0005\\ 1.5583 +0005\\ 1.5583 +0005\\ 1.5583 +0006\\ 1.5645 +0005\\ 1.5583 +0006\\ 1.5645 +0006\\ 1.5645 +0006\\ 1.5773 +0006\\ 1.5773 +0006\\ 1.5874 +0008\\ 1.5932 +0008\\ 1.5931 +0010\\ 1.6031 +0010\\ 1.6078 +0011\\ \end{array}$	N 1.4404 +0005 1.4405 +0005 1.4406 +0005 1.4409 +0005 1.4409 +0005 1.4411 +0005 1.4417 +0005 1.4417 +0005 1.4423 +0005 1.4428 +0005 1.4428 +0005 1.4428 +0005 1.4435 +0005 1.4435 +0005 1.4451 +0005 1.4451 +0005 1.4451 +0005 1.4457 +0005 1.4457 +0005 1.4504 +0005 1.4523 +0005 1.4567 +0005 1.4567 +0005 1.4596 +0005 1.4596 +0005 1.4596 +0005	L-L(M) 26.417 +027 26.414 +028 26.413 +028 26.412 +028 26.410 +028 26.409 +028 26.409 +028 26.405 +028 26.405 +028 26.405 +028 26.405 +028 26.403 +028 26.403 +028 26.398 +028 26.398 +028 26.399 +028 26.399 +028 26.387 +028 26.387 +028 26.387 +028 26.369 +028 26.360 +029 26.282 +029 26.282 +030 26.262 +030
46.71+07 51.30+07 55.13+07	$\begin{array}{c} 1.3073 +0011 \\ 1.6114 +0012 \\ 1.6175 +0013 \\ 1.6224 +0013 \end{array}$	1.4638 +0005 1.4638 +0005 1.4652 +0005	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
58.91+07 61.22+07 64.76+07 63.20+07	1.6271 +0014 1.6300 +0015 1.6343 +0015 1.6383 +0015	1.4656 +0005 1.46740005 1.4637 +0005 1.4699 +0005	26.212 +034 26.205 +035 26.178 +036 26.170 +036
71.59+07 75.37+07 78.52+07 82.31+07	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.4710 +0005 1.4723 +0005 1.4733 +0005 1.4745 +0005	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Suite du tableau 4.4

.

. •

- .

.

85.79+07	1.3579 10022	1.4756 +0005	26.153	+042
39.64+07	1.6619 +0023	1.4763 +0005	26.145	,044
92.96+07	1.6653 +0024	1,4778 +0005	26.140	+045
96,45107	1.6689 +0026	1.4789 +0005	26,134	+047
99.62107	1.6/20 +0027	1.4799 +0005	23.129	+048
102.43+07	1.6748 +0028	1.4303 +0005	26.132	+045
106.69+07	1.6739 +0029	1.4819 +0005	26.118	+051
110,25+-,07	1.6323 40030	1.4829 +0005	26.112	+053
113.74+07	1.4355 +0032	1.4839 +0005	26.107	1055
117,19+-,07	1.6887 +0033	1.4849 +0005	26.102	1056
120.23+07	1.5715 +0034	1.4854 +0005	23.034	4058
124.46+07	1.6753 +	1.4869 +0005	26.092	+060
129.82+07	1.7000 +0038	1.4883 +0005	25.085	+063
135.02+07	1.7045 +0040	1.4897 +0005	26.079	+066
138.73+07	1.7075 +0042	1.4907 +0005	26.074	F−.038
142.46+07	1.7108 +0043	1.4915 +0005	26.065	<u>+</u> 070
145.39+07	1.7136 +0045	1.4925 +0005	23.065	+073
149.07+07	1.7162 +0043	1.4933 +0005	26.061	+075
152.28+07	1.71880043	1.4940 +0005	23.053	1077
155.87+07	1.7217 +0050	1.4949 +0005	26.053	+…,079
159.52+07	1:7246 +0051	1.4958 +0005	26.048	+081
163.20+07	1.7275 +0053	1.4936 +0005	26.040	4084
162.99+07	1.72730053	1.4966 +0005	26.044	+084
166,65+…,07	1.7301 +0055	1.4975 +0005	26.038	4-,088
170.27+07	1.7329 +0052	1.4983 +0005	26.034	+089
174.16+07	1.7359 +0059	1.4792 +0005	26.029	+092
177.59+07	1.7385 +0061	1.5000 +0005	23.024	+,094
181.06+07	1.7411 +0062	1.5008 +0005	26.020	+057
182.16+07	1.7419 +0063	1.5010 +0005	23.017	+097
134.97+07	1.7440 +-,0065	1.5016 +0005	26.012	4100
138.95407	1.7467 +0057	1.5024 +0005	23.004	+103
191.99+07	1.7492 +0069	1.5031 +0005	26.003	+105
195.80+07	1.7517 +0071	1.5040 +0005	25.978	+108
198.86+07	1,7541 +0073	1.50460005	25.995	+111
198.67+07	1.7540 +0072	1.5047 +0005	25.998	111
202,67+07	1.7569 +0075.	11.5054 +0005	125,889	+114
	-			

Figure (4.2): Courbe de l'indice de réfraction en fonction de la pression pour le CCl₄ à 0,0°C, 25,0°C et 50,0°C.

TABLEAU 4.5

Valeurs numériques de l'indice de réfraction (n) et de l'équation de Lorentz-Lorenz modifiée L+L(m) pour le liquide CS_2 à T=0,0 °C.

	PRESSION (MPA)	DENSTIE(G/(CM	MOPSIK) **3)	N		L-L	(M)
		• •					
	7,13+07	1.3019 +		1.343.30-	10005	21.156	+015
· 13	2.41+07	1.3051 +	0005	1.64525	10005	21.155	4015
. 10	5.59407	1.3090 +	0005	1.64774-	+0005	21,156	+−.01 <i>6</i>
19	9,95407	1.3121 +		1.64931.	·0005	21,147	ŀ−.016
23	3,234-,07	1.3150 +		1.35104	+00Q5-,	21.144	+016
2.	5.32++.07	1,3182 +		1.65290	ŀ−.0005	21.140	+01.5
33	3,99+-,07	1,3244 +		1.35660	10005	21,136	+017-
3	6.08+07	1.3261 4	0007	1.65769-	0005	21.133	ł017
. 31	7,55+-,07	1.3274 -		1.45345	1	21.135	+017
41	2.11+07	1.3311 4	0007	1.66064-	0005	21,131	1017
4.	4.61.+07	1.3331 -	0008	1.66171	0005	21.131	4018
4	B.43107	1.3361		1.66374	h,0005	21.129	,01S
51	1.87+07	1.3388 +		1.36544	10005	21.129	+019
53	5.52+07	1.3416	0009	1.66714	k0005	21,127	+01.9
53	B.71+07	1,3440 +	0007	1.46338-	10005	21.128	4020
6	1,694,07	1.3462		1.67000-	k0005	21.123	ł−∙050
6	5,85407	1.3493	0011	1.57120	}0005	21.125	+021
5	B.75107	1.3514 4	0011	1.67319-	10005	21.124	+022
7:	2,18+07	1,3538 +		1.67472	1-,0005	21.123	+022
7.	6.08+07	1.3566 4	0012	1.67640-	0005	21.122	4023
7	9.38+07	1.3508 4	0013	1,67784	10005	21.121	+024
71	9・55キー・0ス	1.3590 -	,0013.	1.67799-	0005	21,123	+024
93	2.67407	1.3611 +	0014	1.67924		21.120	4025
8	6.24 } 07	1.3635 4	0014	1.48078-	0005	21.120	+026
8,	7.90107	1,3659 4	0015	1,68230	1-+0005	21.119	1027
9	3,46+07	1.3683 4	0016	1.383734		21.117	+028
93	3,90+07	1.3686 j		4.65391	+0005	21.117	+
. 9	/ • 1.4 + - • 07	1.3707 -	0017	1.6852 +	0005	21.117	1029
10	0.25+07	1.3727 4		1.4835	0005	21.117	+030
10	4.02+07	1.3750		1.6879 4	0005	21.115	+031
10	6.63+07	1.3767 +		1.5892 }		21.121	4032
.10	7+27+++07	1.3771	0019	1.6895 }	0005	21.122	+,032
101	8.06+07	1.3//6.1		1.3899 +	0005	21.122	t. 032

TABLEAU 4.6

Valeurs numériques de l'indice de réfraction (n) et de l'équation de Lorentz-Lorenz modifiée L-L(m) pour le liquide CS_2 à T=25,0 °C.

PRESSION (MPA)	DENSITE(MOPSIK) G/(CM**3)	N .	L-L(M)
(MPA) $15.85+.07$ $19.39+.07$ $22.72+.07$ $22.72+.07$ $30.68+.07$ $37.23+.07$ $37.23+.07$ $41.23+.07$ $41.23+.07$ $44.62+.07$ $44.62+.07$ $51.83+.07$ $54.86+.07$ $54.86+.07$ $54.86+.07$ $54.86+.07$ $54.86+.07$ $52.00+.07$ $64.77+.07$ $62.52+.07$ $71.48+.07$ $75.48+.07$ $75.48+.07$ $75.95+.07$ $82.71+.07$ $85.99+.07$ $82.71+.07$ $85.99+.07$ $92.95+.07$ $92.95+.07$ $92.95+.07$ $92.95+.07$ $92.95+.07$ $92.95+.07$ $92.95+.07$ $92.95+.07$ $92.95+.07$ $92.95+.07$ $92.95+.07$ $92.95+.07$ $103.08+.07$ $106.73+.07$ $110.57+.07$ $117.84+.07$ $121.21+.07$	6/(CM**3) 1.2730 +0005 1.2768 +0005 1.2802 +0006 1.2802 +0006 1.281 +0006 1.2912 +0007 1.2944 +0007 1.2944 +0008 1.3011 +0008 1.3011 +0008 1.3075 +0009 1.3101 +0019 1.3128 +0011 1.3134 +0012 1.3238 +0012 1.3238 +0012 1.3248 +0013 1.3296 +0013 1.3296 +0015 1.3296 +0015 1.3296 +0015 1.3296 +0015 1.3297 +0015 1.3349 +0015 1.3491 +0017 1.3428 +0018 1.3497 +0019 1.3497 +0020 1.3545 +0022 1.3571 +0023 1.3594 +0024	1. 5281 +0005 1. 6302 +0005 1. 6324 +0005 1. 6324 +0005 1. 6324 +0005 1. 6371 +0005 1. 6389 +0005 1. 6487 +0005 1. 6487 +0005 1. 6487 +0005 1. 6487 +0005 1. 6502 +0005 1. 6519 +0005 1. 6571 +0005 1. 6571 +0005 1. 6571 +0005 1. 6571 +0005 1. 6586 +0005 1. 6604 +0005 1. 6638 +0005 1. 6638 +0005 1. 6638 +0005 1. 6638 +0005 1. 6638 +0005 1. 6638 +0005 1. 6670 +0005 1. 6728 +0005 1. 6720 +0005 1. 6774 +0005 1. 6790 +0005	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
124.93+07 123.34+07 132.05+07 135.69}07 139.48+07 142.63+07	$\begin{array}{r} 1.3618 +0025 \\ 1.3618 +0025 \\ 1.3639 +0026 \\ 1.3663 +0028 \\ 1.3636 +0029 \\ 1.3709 +0030 \\ 1.3728 +0031 \end{array}$	1.6819 +0005 1.6833 +0005 1.6847 +0005 1.6862 +0005 1.6876 +0005 1.6838 +0005	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

°C. La figure (4.3) donne le graphique de "n" en fonction de "P" pour ces deux températures.

4.3.2 CALCUL DE L'EQUATION DE LORENTZ-LORENZ

4.3.2.1 Equation de Lorenz-Lorenz modifiée

Connaissant "n" pour une densité "d", on peut calculer la valeur de l'équation de Lorentz-Lorenz modifiée, définie par:

$$L-L(M) = \frac{n^2 - 1}{n^2 + 2} \frac{M}{d} = \frac{4}{3} \frac{M}{A} \frac{M}{$$

Les résultats obtenus lors du calcul de l'équation L-L(M), pour le CCl_4 , se trouvent aux tableaux (4.2), (4.3) et (4.9) respectivement pour 0,0°C, 25,0°C et 50,0°C. Les figures (4.4), (4.5) et (4.6) donnent la courbe de L-L(M) en fonction de "d" pour les mêmes températures.

Le CS_2 fait l'objet des tableaux (4.5) et (4.6) pour les isothermes de 0,0°C et 25,0°C et les figures (4.7) et (4.8) présentent les courbes de l'équation (4.4) pour les mêmes isothermes.

Figure (4.4): Courbe de l'équation de Lorentz-Lorenz modifiée L-L(m) en fonction de la densité pour le liquide CCl_4 à T=0,0 °C.

<u>Figure (4.5)</u>: Courbe de l'équation de Lorentz-Lorenz modifiée L-L(m) en fonction de la densité pour le liquide CCl₄ à T=25,0 °C.

de la densité pour le liquide CS_2 à T=0,0 °C.

.

de la densité pour le liquide C S_2 à T₂25,0 C.

4.3.2.2 Equation de Lorentz-Lorenz classique

Pour rendre claire la discussion (chap V), nous avons jugé important de calculer l'équation de Lorentz-Lorenz classique:

$$L-L = \frac{n^2 - 1}{n^2 + 2} = \frac{4}{3} \pi \frac{N_A}{M} \approx_{eld} 4.5$$

Les figures (4.9), (4.10) et (4.11) font l'objet de L-L en fonction de la densité pour le liquide CCl_4 , et (4.12), (4.13) pour le liquide CS_2 .

4.4 CALCUL DE LA POLARISABILITE

Les paramètres dont on a besoin dans l'équation Lorentz-Lorenz (4.4) sont connus (n, d). Il nous reste à déduire la valeur de la polarisabilité α_{a1} .

L'analyse de nos résultats expérimentaux de $(n^2-1)M/(n^2+2)d$ en fonction de la densité fut réalisée à partir de la méthode des moindres carrés. Même si la théorie prévoit que l'équation de $(n^2-1)M/(n^2+2)d$ versus la densité est une constante, nous constatons que dans tous les cas le meilleur pôlynome est du premier ordre (voir dans l'appendice B, la

со С

<u>Figure (4.13)</u>: Courbe de l'équation de Lorentz-Lorenz L-L en fonction de la densité pour le liquide CS₂ à T-25,0°C.

série de polynômes pour chaque liquide à différentes températures).

En supposant que la relation de $(n^2-1)M/(n^2+2)d$ est vraiment constante, nous avons calculé α_{el} à partir de la pente à l'origine "B" de l'équation $(n^2-1)M/(n^2+2)d$ versus la densité. Nous obtenons la polarisabilité selon la relation:

$$B = \frac{4}{3} \pi N_A \alpha_{el}$$

Les résultats obtenus sont présentés au tableau (4.7).

4.5 CALCUL DE LA DIFFERENCE (E - n2)POUR LE LIQUIDE CCL

A une certaine fréquence, généralement dans les ondes courtes ou l'infrarouge lointain (I.R.L), les dipôles d'orientation ne s'équilibrent plus avec le champ et nous nous situons dans une zone de dispersion. Dans cette région, les mesures à basse fréquence de "E" et à haute fréquence de "n" aux extrêmes de la région de dispersion, nous permettent d'identifier l'effet d'interaction induite "B_{or}" par le champ multipolaire et celui "B_{ind}" produit par le champ externe.

La contribution d'orientation peut être calculée à l'aide de la relation de dispersion de Krammers-Kronig (1.22). Le problème de cette contribution est qu'elle ne peut

Polarisabilité électronique α_{el} pour les liquides CCl₄ et CS₂ sur trois isothermes.

	$\alpha_{e1} (10^{-24} \text{ cm}^3)$		
 T(°C)	CC14	cs ₂	
0,0	10,95 ± 0,05	8,385 ± 0,003	
25,0	11,09 ± 0,04 10,55 ^a 10,50 ^b	8,65 ± 0,01 8,74 ^a 8,72 ^b	
50,0	11,64 ± 0,02	*	

 Valeurs non mesurées à cause du point de vaporisation du liquide; on ne peut pas mesurer l'indice de réfraction "no à la pression atmosphérique.

a: Valeurs calculées pour λ = 589,3 nm, [6]. b: Valeurs calculées pour λ = 546,1 nm, [7]. pas être séparée facilement à cause de l'absorption due aux molécules simples. Ce type de molécules masque l'effet dû aux molécules paires. Pour cette raison, nous avons choisi des liquides ayant des molécules non polaires. En effet, l'absorption due aux molécules simples est absente et la contribution des molécules paires est facilement observée.

Cette partie concerne seulement le liquide CCl₄, ce dernier est régi par un mécanisme d'absorption dû à l'induction d'un moment dipolaire électrique dans la molécule, sous l'action des moments octopolaires des molécules voisines. L'effet des distortions accompagnant les chocs moléculaires de l'agitation thermique fait que la molécule perd sa symétrie et il y aura création d'un moment dipolaire électrique temporaire.

Les valeurs calculées de $(E - n^2)$ pour le liquide CS_2 étant négatives, nous n'avons pu les comparer avec les résultats trouvés dans l'infrarouge par Marteau [8]. En effet, d'une part les mesures sont réalisées dans deux laboratoires de recherche différents et la pureté des liquides étudiés peut ainsi ne pas être identique. D'autre part, comme les incertitudes sur chaque mesure s'additionnent et que la différence ($E - n^2$) est très fables pour ce liquide, il est possible d'otenir une erreur de 100% ou plus sur cette différence.

Au tableau (4.8) sont consignées les valeurs trouvées de Γ_{KK} du CCl₄ (voir appendice C) et celles mesurées dans l'infrarcuge lointain par Marteau [8]. Rappelons que Γ_{KK} est définie par (voir équations 1.27 et 1.28):

$$\Gamma_{KK} = [(E - n^{2})/R]_{1}; - [(E - n^{2})/3d]_{gaz} d_{1};$$

$$\approx \pi^{-2} \left[\frac{\alpha(f)}{f^{2}} df \right]$$
4.6

Les valeurs de E, n et d gaz en phase gaseuze [9,10] sont rapportées à l'appendice C.

Les figures (4.14), (4.15) et (4.16) représentent les valeurs de Γ_{KK} en fonction de la la densité pour le liquide CCl₄ respectivement aux isothermes T=0,0 °C, T=25,0 °C et T=50,0 °C. Ces résultats sont discutés en détail dans le chapitre V (paragraphe 5.2).

A la température T =0,0 °C, on a rencontré certains problèmes à haute pression. Pour le CCl_4 , à une pression de 12600 PSI (868,7 bar), on a observé un changement de phase, qui rend le liquide opaque et la perte du signal optique. Pour le liquide CS_2 , on n'a pas pu augmenter la pression à plus de 15000 PSI (1034,2 bar) en raison de la formation de bulles d'air dans le sac. Ces dernières ont tendance à le percer. Par conséquent, le CS_2 se mélange avec l'huile de
TABLEAU 4.8

Valeurs de la différence relative (\triangle^*) obtenues avec nos valeurs de $\Gamma_{\rm KK}$ et celles de Marteau à T= 0,0 °C, T= 25,0°C et T= 50,0 °C.

Т	ci _{1 i}	E	Π	Г _{КК×10} 2	Γ _{KK×10} 2	△ *
(°C)	(g/cm ³)	1		(nous)	(Marteau)	(%)
00,0	1,6344	2,2786	1,4709	2,3008	0,9179	60,1
	1,6474	2,2925	1,4756	2,3000	0,9238	59,8
	1,6607	2,3061	1,4800	2,3048	0,9370	59,3
	1,6723	2,3188	1,4841	2,3216	0,9502	59,0
	1,6839	2,3309	1,4879	2,3355	0,9611	58,8
	1,6962	2,3421	1,4916	2,335	0,9672	58,6
25,0	1,5847	2,2286	1,4558	2,211	0,8783	60,2
	1,6167	2,2606	1,4659	2,263	0,9013	60,1
	1,6445	2,2879	1,4748	2,286	0,9272	59,5
	1,6668	2,3123	1,4826	2,310	0,9373	59,4
	1,7075	2,3539	1,4959	2,360	0,9666	59,0
50,0	1,5358	2,1789	1,4406	2,112	0,8252	60,9
	1,5548	2,1985	1,4458	2,228	0,8791	60 ,5
r -	1,5724	2,2159	1,4507	2,294	0,8730	61,9
	1,6303	2,2734	1,4673	2,490	0,9005	63,8
	1,6729	2,3188	1,4805	2,641	0,9345	64,6
	1,6979	2,3430	1,4875	2,725	0,9544	64,9
×.	ГКК	(N)-F _{KK}	M)			
π .		Γ _{KK} (N)	- ×100			

compression. De plus, les valeurs de la constante diélectrique en fonction de la pression de Mopsik [5] ne couvrent pas entièrement la gamme de pression que nous avons utilisée. En définitive, il faudrait améliorer le système en utilisant un soufflet métallique (voir conclusion) pour pouvoir prendre des mesures à très haute pression, mais aussi pour pouvoir mesurer simultanément l'indice de réfraction, la constante diélectrique et la densité du liquide.

LISTE DES OUVRAGES CITES DANS LE CHAPITRE IV

- 1- E. Reisler and H. Eisenberg, J. Chem. Soc. Faraday Trans. <u>II 68,</u> 1001 (1972).
- 2- R.M Waxler et R.M Weir, J.Res. Nat. Bur. Stand.<u>67A</u>, 163 (1963).
- 3- J.D. Olson and F.H. Horne, J.Chem. Phys, <u>58</u>, 2321 (1973).
- 4- D. Beysens and P. Calmettes, J. Chem. Phys, <u>66</u>, 766 (1977).
- 5- J. Stone, J. Opt. Sc. Am. <u>62</u>, 327 (1972).
- 6- C.J.F. Böttcher et P.Bordewijh "Theory of Electric Polarisation", <u>Vol.II</u>, Elsevier, Amsterdam (1978).
- 7- M.Davies, "Dielectric and Related Molecular", <u>Vol.1</u>, The Chemical Society, Burlington House, London (1972).
- 8- P.Marteau, "Laboratoire d'interaction moléculaire et de haute pression", C.R.N.S, Villetaneuse, Paris Nord. communication privée.
- 9- Handbook of Physics and Chemistry, 60^{ieme} édition, Chemical Rubber Co, Florida (1986).
- 10- H. Lowery, Proc. Phys. Soc, <u>39</u>, 421 (1927).

CHAPITRE V

DISCUSSION

INTRODUCTION

La discussion des résultats obtenus dans ce projet fait l'objet du présent chapitre. Nous avons mesuré l'indice de réfraction jusqu'à des pressions de l'ordre de 2 kbar dans le but d'augmenter les interactions intermoléculaires et de vérifier la validité de l'équation de Lorentz-Lorenz jusqu'à une telle pression.

5.1 SYSTEME DE REFRACTION

Les mesures de l'indice de réfraction en fonction de la pression pour les deux liquides sont en concordance avec les mesures de Vedam [1,2]. En effet l'indice de réfraction croît avec la pression et décroit avec l'augmentation de la température (figures 4.2, 4.3). Grâce à ces mesures le point de refroidissement du liquide peut être déterminé. Par exemple à T =0,0°C pour le liquide CCl₄, la pression maximale annoncée correspond à un changement de phase observé vers

12000 PSI. Ce changement est caractérisé par une diffusion de la lumière laser et une perte du signal optique. En diminuant légèrement la pression, on retrouve le signal et on peut compter la variation des franges.

5.1.1 EQUATION DE LORENTZ-LORENZ

L'examen des figures (4.9), (4.10) et (4.11), pour le CCl_4 et des figures (4.12) et (4.13) pour le CS_2 permet de constater que l'équation de Lorentz-Lorenz (L-L):

$$\frac{n^2 - 1}{n^2 + 2} = \frac{4}{3} \frac{N_A}{M} \approx_{el} d$$
 5.1

n'est pas une bonne représentation pour les liquides non polaires à haute densité. En effet, la déviation de cette équation montre clairement que la polarisabilité n'est pas une constante indépendante de la température et des interactions moléculaires comme le prédit la théorie classique [3,4].

L'examen des figures (4.4), (4.5) et (4.6) pour le CCl_4 liquide et des figures (4.7) et (4.8) pour le CS_2 liquide montre que l'équation modifiée de Lorentz-Lorenz (5.2) qui est représentée ci-dessous n'est pas une constante:

$$\frac{n^2 - 1}{n^2 + 2} M = \frac{4}{\pi} N_A \alpha_{e1}$$
 5.2

L'hypothèse de l'invariance de la polarisabilité, telle qu'elle est annoncée par la théorie classique vient d'être infirmée. En effet, la polarisabilité est décroissante en fonction d'une augmentation de pression pour les deux liquides et ce sur toutes les isothermes. On en déduit que l'équation (5.1) doit avoir en phase liquide un terme de correction [5] qui tient compte de interactions de courtes portées.

5.1.2 POLARISABILITE

D'après les résultats (appendice A) du programme de moindres carrés de $(n^2 - i)M/(n^2+2)d$ en fonction de la densité "d", le meilleur pôlynome représentant cette fonction est de la forme <u>A.X + B</u> sauf dans le cas du CCl₄ liquide à T=0,0 °C et T= 25,0 °C, ce qui implique que la polarisabilité n'est pas constante.

Le tableau (5.1) fait l'objet de la variation de la polarisabilité en fonction de la densité. Notons que pour ce calcul, on a supposé que la relation de Lorentz-Lorenz modifiée est vraie. De plus, nous constatons qu'à l'intérieur des limites d'incertitude la polarisabilité croît très peu avec la température. Cette dernière remarque est liée

TABLEAU 5.1

Variation de la polarisabilité (α_{el}) en fonction de la température et la densité.

	CC14		CS ₂	
T(°C)	∝ _{el×10} 24	d	∝ _{el×10} 24	d
	(cm ³)	(g/cm ³)	(cm ³)	(g/cm ³)
00,0	$10,43 \pm 0,01$	1,63	$8,40 \pm 0,01$ $8,37 \pm 0.02$	1,29
25,0	$10,45 \pm 0,02$ $10,28 \pm 0,04$	1,59	8,42 ± 0,02 8,39 ± 0,01	1,25
50,0	$10,48 \pm 0,01$ 10,31 ± 0,02	1,53	-	-

probablement à la non polarité des liquides étudiés (CCl₄, CS₂). En effet, les fluctuations thermiques des moments dipolaires permanents sont absentes. Ce qui nous permet de suggérer la vérification, dans les travaux ultérieurs, de l'effet de la température sur la polarisabilité pour les liquides polaires. Dans ce tableau (5.1), on y constate que la polarisabilité accuse une faible décroissance en fonction de la densité, ce qui est conforme à des mesures antérieures [2, 5, 6] et à l'équation (1.15) d'Omini [7] qui stipule que la polarisabilité décroît lors de l'augmentation de la pression.

Compte tenu des divers résultats expérimentaux, il nous apparaît que tout modèle de la polarisabilité en phase liquide devrait dépendre de la décroissance de la polarisabilité en fonction d'une augmentation de la densité, d'une faible augmentation de la polarisabilité avec la température et des autres interactions moléculaires.

Le modèle proposé par Omini [7] se rapproche de ces conditions. En effet, il propose pour la phase liquide, que la polarisabilité dépende explicitement de la densité et de la température. Il tient aussi compte des interactions moléculaires à travers la fonction de distribution radiale g(R):

$$x = x_{O} + A^{*}d - C^{*}d T g(R) \qquad 5.3$$

où A^* et C^* sont des paramètres dépendent de la polarisabilité (voir, référence [7]), α_0 est la polarisabilité à la pression atmosphérique et R est le rayon moléculaire.

Vedam et Limsuwan [2] ont montré que l'équation d'Omini est très près des valeurs expérimentales qu'ils ont obtenues.

5.2 RELATION (E - n²) POUR LE CC1

D'après les figures (4.14), (4.15) et (4.16), nous constatons que les valeurs de $\Gamma_{\rm KK}$ que nous avons obtenues sont supérieures à celles mesurées par Marteau dans l'infrarouge lointain. Ceci est normal car nos mesures couvrent toute la gamme de fréquences. La différence relative entre nos valeurs et celles de Marteau est de l'ordre de 60%. Ce pourcentage peut être associé à l'absorption induite par collision dans les micro-ondes et l'infrarouge.

En considérant les résultats ci-haut (60%) et ceux annoncés par Urbaniak et Daag [9] qui ont estimé à 20% la contribution des interactions moléculaires dans la bande des micro-ondes, on peut déduire que dans la bande de l'infrarouge l'absorption induite par collision contribue pour environ 40%. Cette déduction est en accord avec deux observations antérieures:

l'une avec le spectre d'absorption, du liquide CCl_d , dans l'infrarouge [10]; ce spectre montre une très forte bande d'absorption autour de 800 cm⁻¹ et une, moins forte autour de 310 cm⁻¹ et l'autre avec le résultat de Bellamy [11] qui a fait une étude sur les liaisons C-Cl, et qui a déduit que les composants possèdant ce type de liaison ont une absorption entre 693 cm⁻¹ et 800 cm⁻¹ et en particulier le liquide CCl_4 qui présente une forte absorption à 797 cm⁻¹ dans l'infrarouge. Soulignant aussi que les impuretées (molécules polaires d'eau) contenues dans le CCl_4 liquide utilisé et certaines bandes de différence susceptibles d'apparaître sur le spectre contribuent probablement à l'absorption.

LISTE DES OUVRAGES CITES DANS LE CHAPITRE V

- 1- K. Vedam et P. Limsuwan, J. Chem. Phys, 69, 4762 (1978). K. Vedam et P. Limsuwan, J. Chem. Phys, <u>69</u>, 4772 (1978). 2-J. Yvon, J. Actualités Scientifiques et Industrielles, 3-Nos. 542, Paris (1937). J.G. Kirkwood, J. Chem. Phys. 4, 592 (1936). 4-5-D.Beysens and P.Calmettes, J.Chem. Phys, <u>66</u>, 766 (1977). 6-C.C. Chen and K.Vedam, J.Chem. Phys, 73, 4577 (1977). M. Omini, Journal de Physique, <u>39</u>, 847, (1978). 7-8-P.Marteau, "Laboratoire d'Interaction Moléculaire et de Haute Pression", C.R.N.S, Villetaneuse, Paris Nord, communication privée. J.L. Urbaniak, I.R.Dagg and G.E. Reesor, Can.J.Phys, 55, 9-496 (1976).
- 10 D.N.Kendall "Applied Infrared Spectroscopy", D.N.Kendall, N.Y (1966).
 - 11 L.J. Bellamy "The Infrared Spectra of complex molecules", L.J. Bellamy, London (1966).

CONCLUSION

Nous avons utilisé dans ce mémoire une approche expérimentale très fiable. En effet, les résultats obtenus nous ont permis de confirmer la non validité de l'hypothèse classique qui stipule que l'équation de Lorentz-Lorenz est linéaire avec la densité et que la polarisabilité est constante. Comme l'équation d'Omini est spécifique aux liquides, nous suggérons l'utilisation de celle-ci à l'équation de Lorentz-Lorenz plus générale.

De plus, nous sommes parmi les premiers à lier des mesures à basse fréquences et dans la bande optique à des mesures dans l'infrarouge lointaine, pour l'état liquide, et ce, en calculant la différence ($\varepsilon - n^2$) pour diverses températures. Cette différence nous a conduit à évaluer la contribution de l'absorption induite par collision dans l'infrarouge pour le CCl₄.

Suite aux mesures réalisées, qu'il nous soit permis d'apporter quelques suggestions pour améliorer le montage utilisé et accroître la qualité des observations

expérimentales. Le remplacement du sac en polyéthylène par un soufflet métallique permetterait d'accroître le rythme des mesures en empêchant les nombreux bris du sac. Tel que souligné auparavent dans le cas du CS2, le fait que la différence (E - n^2) soit petite nous amène à suggérer des mesures simultanées de l'indice de réfraction, de la constante diélectrique et de la densité. Ce faisant, i] serait possible de réaliser ces diverses mesures sur le même échantillon. Ceci permettrait de s'assurer de la haute qualité du liquide qui pourrait avoir été distillé et traité pour réduire à un minimum les traces d'eau, par exemple. De plus, les mesures simultanées permettraient de limiter les fluctuations de température et de pression car toutes les mesures seraient réalisées sous le même contrôle de température et les pressions seraient mesurées en même temps pour l'indice de réfraction, la constante diélectrique et la densité.

APPENDICE A

EXEMPLE DE CALCUL DE L'INDICE DE REFRACTION (n) A PARTIR DU RAPPORT $(\Delta n)/(\Delta T)$

Prenons comme exemple le calcul de l'indice de réfraction pour le CCl_4 à T= 50,0 °C. Connaissant la valeur de l'indice de réfraction du CCl_4 à T= 25,0 °C et une longueur d'onde de 632,8 nm, soit n₂₅= 1,4559, connaissant aussi le rapport [3]:

$$(\Delta n)/(\Delta T) = -5,7 \times 10^{-4}$$
 A.1

L'indice de réfraction à 50,0 °C se calcule de la relation (A.1)

$$\Delta n = \Delta T \times (-5, 7 \times 10^{-4})$$
A.2

$$n_{50} = n_{25} = (50 - 25) \times (-5, 7 \times 10^{-4})$$

$$n_{50} = n_{25} - 1,425 \times 10^{-2}$$

$$= 1,4416$$

Soulignons que le calcul de l'indice de réfraction pour les autres isothermes s'effectue de la même façon que celle citée ci-dessus.

CAS 9	Y=A+BX					
				-LIMITE SUR 3 DE	VIATIONS STANDARD	<u>(;</u>
				- FRASSE	FHAUTE	
A≕ .	24823334E+02	いこうりょう	12474008E+00	-26449113E+02	.27197554E+02	
ß	31081501L+00	DEVD=	.74943674E-01	··•53564603E400	859839901-01	
DEVIA	TTUN STANDARD	0E 1.A	URDITE =	.10227034E-01		
TEST	DU CHI CARRE R	EDUIT		·10457222E-03		
NETS	X(I) Y FITT	E YC	E) DEV(I)	RANG		
()	.0000000E+	0.0		.26823334E+02		
1	,16344350E4	01	.24301120E+02	.26315327F+02	14206657F-01	3
	,16349 34 0E+	01 ·	23301030E+02	.26315156E+02	~.14096020E-01	5
3	.16351850E+	01	.26311710F+02	.26315094F402	-,33835458F-02	25
.'Ę	+16362610E+	01	.26304700E+02	·26314259E+02	70591089E-02	10
5	.16364980F+	01	+263051101402	+26314685E402	95754457E-02	11
	*18377150E+	01	+263063900+02	.26314307E+02	-+77171838E-02	1.6
7	,16398330E+	01	+26309020E402	.26313649E+02	46288777F-02	21
3	€16401590EF	01	+26309810E+02	·263135485+02	~,37378628E~02	24
120	.16425500E4	01	+26311160E402	+26312804F+02	16443933E-02	28
1.0	-164460Z0EF	01	+26313970E+02	+26312165E+02	+18049532E-02	26
3-1	.16453700E+	01	.26316140E402	.26311866E402	.42942681E-02	22
1.2	.13438900E+	01	.26317500E+02	,26311518E+02	+59823809E-02	18
	+16504000Eł	01	·26319730E+02	·26310364E402	·\$2655046E-02	12
14	.46560230EF	01	.263205008+02	·263086178402	.11983217E-01	, <u>9</u>
	.16592010E+	01	+263223001+02	·26307629E402	.14670987E-01	2
1.5	- 16634789日本	01	.26320020E+02	.23306300E+02	.13720343E-01	7
£ 2	-16681290E+	01	+26318960E+02	·26304854E102	.141057440-01	4
ξĖ.	.1≤2≤≤730€+	01	.26314480E+02	·263021978±02	.12283101E-01	9
1	+16794970E+	04	.263106800+02	.243013211 F02	.93592889F-02	1.3
20	。1.58699668F李	01	.24310140E+02	.36300855E+02	.930520038-02	1.4
1	,1635月1546周日	Q 1	.263081808402	.232995621402	.84175495F+02	4 5

APPENDI CE

0

Rapport de l'ordinateur pour l'équation de Lorentz-Lorenz modifiée du liquide CCl_4 à T=0,0 C.

Suite du rapport de l'ordinateur pour l'équation de Lorenzt-Lorenz modifiée du liquide CC1₄ à T=0,0 °C.

22	1,168910208101	↓26302530E+02	·23228334E+02	·41862212E 02	23
2.2	.1753438800401	.26298420E+02	·262966990E+02	.17279461E-02	2.2
24	,16971200F+01	↓25290420E¥02	·262958218+02	·.53314611E-02	2.0
25	,17008570E+01	,28388850E402	·26294775F+02		19
2.6	.17041020E+01	-+28588550EF02	.26293471E+02	738093208-02	1.7
1317	.17079760E+01	,26278690E+02	+26292469E402	-,137790101-01	6
2.8	·1/116680E+01	,25271340ドトロネ	+26291321E+02	12281481E-01	

Rapport de l'ordinateur pour l'équation de Lorentz-Lorenz modifiée du liquide CC1₄ à T $_{\pm}$ 25,0 C.

CAS 1 Y=A+BX

-LIMITE SUR 3 DEVIATIONS STANDARDS-

ñ= ,0 9=,0	279532480702 97807233E+00	0EVB= 0EVB=	,948727 .557835	335-01 175-01	+8488E ,27653630E+02 -,11454229E+01	+HAUTE .28237867E+02 91972178F+00	
DEG19.	TION STANDARD DU CHI CARRE	DE LA REDUIT	THE DIT I FE	:	.23719400E-01 .56260992E-03		
NETS	X(I)		YCI)	Y FITTE	$\mathrm{BU} \wedge (1)$	RANC
Q	+00000000E	100			+2795324BE+02		
1	.158468300	+01	,263815	206+02	.26403314E+02	21793764E-01	21
2	·15946820E	+01	.263537	508402	.26393534E+02	39784019E-01	5
З.	.16017750E	+01	.263370	50E402	·26386597E+02	~,495465521-01	2
z),	·16061670E	FO1	.283518	902402	+25382301E+02	30610858E-01	8
5	.16115080E	+01	.263582	108+02	·26327077F+02	18866973E-01	27
6	·16167760E	+ O 1	.263430	108402	+23371924E+02	287144888-01	11
7	.16217800E	+01	.263503	50104-02	.26367030E+02	16680214E-01	35
13	↓13235950€	+ O 1	+263502	50E}02	.26362321E+02	120707968-01	4 5
9	,16314030E	+01	.263440	50E+02	·26357618E+02	13568224E-01	4.3
1.0	+16360030E	+01	+263415	201102	.26353119EF02	11599092E-01	47
1.1.	.16405680E	+01	.263381	BOE+02	·26348654E+02	10474191E-01	49
1.2	、13448930月	101	.263364	10月10月	·26344421E+02	80110944E-02	5.1
1.3	.16492510E	4 O 1	.263305	50E+02	+26340162E+02	96115893E-02	50
1 4	+13533710£	÷01	+263439	60E+02	·26336132E+02	.78280687E-02	52
1.15	.16573840E	+01	.263487	20E402	.263322076+02	.16583073E-01	36
1.5	+16614510E	F01	.263454	502402	.26323229E+02	,17220893E-01	31
1.7	.16653110E	401	.263437	90E402	·26324454E+02	.19336252F-01	24
1.8	.13653110E	+01	.263437	208102	·26324454E+02	19336252E-01	2.5
1.5	.16692150E	+01	.263374	40E+02	,20320035E402	.16804647E-01	34
(: 0)	+14729270E	FOT	.243378	008102	,23317005E+02	·20795251E-01	22
24	、16765730E	4-0.1	.263354	101402	,26313439円十02	,21971303E-01 .	19
1.1.2	/160025 5 0E	101	1.263345	30F402	-200009836E402	.22143543E+01	12

Suite du rapport de l'ordinateur pour l'équation de Lorentz-Lorenz modifiée du liquide CC1 à T-25,0 C

23	.16837800E101 .	·26328280E#02	,26306370E+02	.21890270F-01	2.0
ુ ત્	.16873610EF01	·26331110E+02	·26302387E+02	.332227478-01	1.2
20	↓16907790E±01	,263297600+02	,26299544E+02	.30215799E-01	9
2.6	.16941510E+01	·26327460E+02	·26296246E+02	.312138582-01	72
2.2	.16975700E+01	.26320430E402	,26292902E+02	.27522888E-01	1.3
23	↓17008560F101	·20306200E+02	.24289688E+02	.13511833E-01	37
22	.17041930E401	.26301260E+02	·26286424E+02	.14835661E-01	41
.3 (1	.12074930E+01	·26298540E102	.26283197E+02	.15343300E-01	39
31	.17105950E+01	·26293280F+02	,26280163E402	.13117280E-01	44
32	.12138300E+01	.26294920EF02	,24276999EF02	.17921344E-01	28
5.5	17169490円±01	,26296430E+02	,26273948E402	.224819520-01	16
34	+17201410EF01	►26293430E+02	.26270826E+02	·22603258E-01	1 5
3.5	17232950E301	·26289850E+02	.26267741E+02	·22108799E-01	18
3.5	·17262570E+01	.26282410EF02	.26234844E+02	.175 65849 E-01	29
3.2	,17293690E+01	126278670E+02	.26261800E+02	.16869610E-01	33
3.8	↓17323790€+01	+23278130E+02	.26258856E+02	19273308E-01	2.6
3.9	.17354560E+01	·26275470E+02	.26255847F402	.19623136E-01	23
4.0	·17384350E+01	,23270400E±02	.26252933E+02	.17466314E-01	30
41	.17414140E+01	·26266090E+02	.26250020E+02	.16070491E-01	38
42	 17444530EF01 	+26257400E+02	.26247047E+02	·10552853E-01	48
4.3	.17474000E+01	·26251950E+02	·26244165E+02	.77852322E-02	53
24	.17503320EF01	+26246910EF02	,26241270E+02	.56197868E-02	55
45	17533660E+01	·26239530E+02	,26239330E+02	.12004118E-02	56
16	17562940E±01	·25234540F+02	,26235466E+02	82579243E-03	57
47	.17593010E+01	.26225490F+02 .	·5653522222405	70347289E-02	54
1 13	176222508+01	+25217840E+02	.26227665E+02	11824845E-01	46
41 B	·17651480E+01	.26213050E+02	·59559809E+05	13755940E-01	42
5 e S	(1)2581540回101		,24223866EF02	150553552-01	40
51	*17710920E401	·26204050F+02	·262205920+02		3.2
1 P	17741050E+01	+06194720EF02	.26218045E+02	23275346E-01	1.4
1913	.17770400E+01	 26185990円±02 	.26215175F402	29184704E-01	10
14	17/29820F+01	-26175020F+02	.26212297EF02	37207215E-01	6
\$165	.17830130E+01	,26166100E+02	,26102333E+02	-,44232678E-01	4
$\sum_{i=1}^{N} f_i \in \mathcal{L}_{X_i}$	12525830E101	26158210CF02	,262064285102	10217803E-01	3
5 . · ·	くまにおおすねの日本の手	,251340200102	·272066023E102	· , 5:295 27231 · 01	1

Rapport de l'ordinateur pour l'équation de Lorentz-Lorenz modifiéedu liquide CC14 à T-50,0°C.

CAS 1 Y=A+BX

n= .27385633E+02 DEVA= 8=19395072E+01 DEV8=	.30296935E-01 .18394503E-01	+0A86E .292947425402 ~.19946907F+01	+116UTE .20473524E+02 .18843237E101
DEVIATION STANDARD DE LA TEST DU CHI CARRE REDUIT	11801TE =	+11701429E-01 +13692344F-03	

NPTS	X(I)	Y(I)	Y FUTTE	DEV(I)	RANI
0	.0000000E400		·22335633E+02		
1	.15358050E+01	·26417570E+02	.26406928E402	·10641671E-01	30
2	+15363560E+01	·26414720E+02	.23405830E+02	.88603394E-02 *	4.9
3	.15369070E+01	,26413800E+02	·26404791E402	,90090079E-02	45
4	.15377220E+01	,23412080E+02	.26403197E+02	.88932828E-02	42
÷.	·15385480E+01	·26410490E+02	.26401608E+02-	.88817393E-02	4.8
6	.15399600E+01	,234093302102	.23398870E+02	.10470323E-01	3.8
7	.15405000E+01	·26408250E+02	·26397822F+02	.10422652E-01	4.0
8	.15424070E}01	.26405650E+02	·26394124E102	.115262288E-01	28
9	.15433670E+01	.26404730E+02	·5938559511405	.12468225E-01	23.
1 O	·15441630E+01	↓26403510E+02	.233907185402	.12792072E-01	22
1. 1.	.15456670E+01	.26398110F+02	.26387801E+02	.103090918-01	4.3
1.2	.154655902+01	·26395330E+02	·26386071E+02	·\$25\$1316E-02	4.5
1.3	.15491070E+01	•26392780E+02	.263811298402	,114S0996E-01	2.6
14	.18506770E+01	.2838520F+05	·26378084E+02	11446022E-01	
1.5	.15519540E+01	·26387210E+02	126375607E+02	,11602773円-01	27
16	.19533030E+01	.26385460E+02	.26372409E+O2	.13051020E-01	20
1.7	15583180E+01	.26369570F402	·263632641+02	.63057970E-021	5.9
18	.15645770E+01	.263597801302	• 急を認知まま2時日子Q2	.84551727E-02	51
1.9	.15705720E+01	·26342150E+02	+26339497E402	,党占历军领北台势民一位分子	1. 25
\otimes O	15773290E401	・26327760日本02	·243263925+01	.1%62%682E-03	6 ⁽)
21	+15822070E+01	.26314860E+02	- Co3167310502	.,20213150E=02	6.2
	・18回ア4日40円101	↓ えるぶり1570ドキクミ	えからかりみ 差型時間 もの とう	- 5134部線26-02	1. j. v. j.

Suite du rapport de l'ordinateur pour l'équation de Lorentz-Lorenz modifiée du liquide CC14 à T=50,0 °C.

23	.15932210E+01	·26282400E+02	,26205570ドキウクニー,13169583ドー01	19
24	.15931190E+01	·26274790E+02	· 26236070E+02	3.0
25	,16031300E+01	· +26262510F+02	,26276351E+02 -,13841005E-01	5 t
2.6	·16078410E+01	23251430E+02	· .26267214E+0215783937E-01	1.3
27	.16114690E401	·26243640E402	· .28260177F10216537455F-01	1.2
2.8	.16175310E+01	.26231980FF02	.26248420E+0216540162E-01	L B
29	.16224900E+01	,26221140E+02	.26238802F102 -,17662146E-01	100 A
30	+16271820E+01	+23212740E+02		8
3.1	.16300300E+01	.26205610E+02	26224178E+0219538261E-01	1.
32	+16343010E±01	+23198020E+02	,26215895E±02 ~,17874626E+01	(\mathbf{r})
33	.16383660E+01	,26190230E+02	.26208011E+0217780529E-01	3
3.4	16422840E±01	·26182920E+02	26200412E+0217491540E-01	6
35	.16465640E+01	+26174400E+02	26192110E+0217710449F-01	4
36	.16500640E+01	+26168240E+02	26185322EF0217082174E-01	.7
37	.16541960E+01	+26160420E+02	+26177308E+02 -,16888130E-01	φ´
38	·16579200E+01	.261536408+02		1 K
39	16619540E+01	.26145620E+02	+26162261E+02 -+16641433E-01	1.0
40	16653690E+01	.26140360E+02	.26155638EF0215228016E-01	1.51
41	.16689100E+01	.26134010E+02		1.72
4.2	.13720320E+01	+26129800EF02	.26142657E+0212856894E-01	21
43	.16789340E+01	+26118070E+02	.26129329E+0211258600E-01	.3.1
44	13823220E+01	+20112180E+02	+23122758E+02 -+10577550E-01	37
45	.16855810E+01	+26107810E+02	· .26116437E+0286266957E-02	52
46	+13887330E+01	+261027502+02	.26110259E+0275093652E-02	0.0
47	.16953130E+01	+26092880E+02	- ,26097561E+02 - ,46814114E-02	62
48	.17000330E+01 .	+230832707+02	,26088407E+02 ~.21369374E-02	6.7
4.9	+17045170E+01	+26079310E+02	20079710E+0240018699E-03	7 t
50	17073340E+01	,26074760€±02	+23073607E+02 +1153442RE+02	7.0
51	17107950E+01	·26069770E+02	.26067534E102 .22360393E-02	6.6
52	 17136340元十01 	+26035530E+Q2		64
53	.17162380E401	·26061150E+02	- ,26056977F+02 - ,41727771E-02	8.3
54	17188380E+01	·260567908102	,25051935E+02 ,40554959E-02	61
55	+17217240E+01	·26053060E402		15 Z

]] 5

Suite du rapport de l'ordinateur pour l'équation de Lorentz-Lorenz modifiée du liquide CC14 à T=50,0°C.

4.5 Z	4 72 CY A Z CY A Z P2 Y A A				
NT (3	+ エノス 4 G ス 4 Q 池 本 Q 1	+26943390F192	- 26030213ml02	, 2582す8タブに、00	52
52	+172/5150E+01	·26040130F+02	,25035105F100	,8024400111-02	c ()
58	+17273510E+01	+26044100EF02	·26035423E+02	,36765204E-02	50
59	17301930E+01	.26038000E402	+26029911E+02	.80886004E-02	53
60	1/329850E+01	·26034950E+02	・28024493Eキロ2	.10463705E-01	3.0
61	17359530E401	·26027500E+02	·26018740E+02	·10760162E-01	35
62	·17385450E+01	·26024970E+02	·26013713E+02	.11257365E-01	32
63	17411480E+01	.26020510E+02	· .26008664E+02	.118459021-01	25
84	·17419690E+01	+26017410E+02	,26007072E402	.10338237E-01	42
65	.17440590E+01	.26012820E+02	.26003018E+02	,980180750~02	44
6.6	↓17469860E+01	·26004840E+02	↓25992341E+02	·74987451E-02	53
:67	17492080E+01	,26003870E+02	·25993032E+02	.10838330E-01	3.9
68	+17519800E+01	·25998040%+02	+25987655E+02	.103846448-01	41
69	.17541810E+01	·25995290E+02	.259833878402	.11903500E-01	<u>`</u> ^
20	.17540500E+01	·25228850E+02	·25983641E+02	.15209424E-01	16
71	17569160E+01	·25789160E+02	·25973082E+02	.11078052E-01	33

Suite du rapport de l'ordinateur pour l'équation de Lorentz-Lorenz modifiée du liquide CS_2 à T_z 0,0 °C.

CAS 1 Y=A+BX

-LIMULE SUR 3 DEVIATIONS STANDARDS-

A= .218594308+02 B=54330693E+00))EVA= DEVB=	+37955843 +28308055	6E-01 F-01	+BASSE +21745543E+02 62823109E+00	+HAUTE .21973293E402 45838277E+00
DEVIATION STANDARD TEST DU CHI CARRE F	DE LA REDUIT	080 (TE		.30901746E-02 .95491788E-05	

NPTS	X(I)	Y(I)	Y FITTI	DEV(I)	RANG
0	+0000000E+00		+21859430E+02		
1	.13019440E+01	21156130E402	·21152075E+02	.40548391E-02	4
2	13050970E+01	·21155740E+02	+21150362E+02	•53728859E-02	2
3	.13090330E+01	.21156570E+02	·21148224E+02	,83463420E-02	1.
4	.13121260E+01	.21147340E+02	.21146543E+02	.79579030E-03	23
3	.13150840E+01	+21144240E+02	.21144936E+02	69610780E-03	25
6	.13182700E+01	.21140520E+02	.21143205EF02	25851319E-02	10
7	.13244330E+01	.21136380F402	.21139857F+02	34767313F-02	6
- 8	.13261880E}01	·21136160E+02	.21138903E+02	27432276E-02	<u>.</u> ,
9	.13274170E+01	·21135780E+02	.21138236E+02	-,245550340-02	12
10	.13311500E+01	.21131570E+02		463733878-02	3
11	.13331570E+01	.21131650E+02	.21135117E+02		7
12	.13361840E+01	+21129390E+02	·21133472E+02	3/823316E-02	5
13	.13388650E+01	.21129670E+02	.21132016E+02	-,23457257E-02,	15
14	·13416620E+01	+21127920E+02	.21130496EF02	257609622-02	11
15	.13440690E+01	21128360E+02	.21129188E+02	-,82835641E-03	22
16	13462830E+01	+21126150EF02	.21127983E+02	18327583E-02	19
17	+13493310E+01	,21125340E+02	·21126329E+02		20
18	13514230E+01	.21124360E+02	.21125193E+02	-,83287724E-03	2.1
19	.13538640E+01	.21123640E+02	·21123867E+02	22666503E-03	27
20	·13566030E+01	.21122170E+02	.21122379E+02	-,20854734E-03	58
21	.13588880E+01	.21121580E+02	+21121137F+02	-44290899E-03	26
22	+13590030E+01	+21123430E+02	·21121075F402	,235538 93E ~02	1.4

Suite du rapport de l'ordinateur pour l'équation de Lorentz-Lorenz modifiée du liquide CS $_2$ à T=0,0 $^{\circ}$ C.

23	•13611350E+01	·21120670F+02	·21119916E102	- 75371967E-03	2.4
24	 13635410E+01 	,21120690€+02	+21113609E+02	.20809131E-02	Ιċ
25	·13659800E+01	·21119650E+02	.21117284E+02	.23660417E-02	1.3
26	,13683150EF01	+21117980E+02	+21113015E+02	.19646634E~⊙2	18
27	+13686060E+01	+21117840E±02	.21115857F+02	.19822657E-02	1.7
28	+13707020E+01	+21112880EF02	.21114718E+02	.31615371E-02	8

Rapport de l'ordinateur pour l'équation de Lorenzt-Lorenz modifiée du liquide CS₂ à T±25,0℃.

CAS 1 Y=A+8X

-LIMITE SUR 3 DEVIATIONS STANDARDS-

<u>A</u> :=	.32416145E+00 DEVA-	+4856 574 58+00	+BASSE ~,10628109E+01	+HAUTE 185113388101	
¥3 ===	.15660747E+02 DEVB=	·37065061E+00	,14548796E+02	.167726991+02	
DEV1 TEST	ATION STANDARD DE LA DU CHI CARRE REDUIT	0R0108 =	.490030426+00 .24017887E+00		
NPTS	X(I)	Y(I)	Y FITTE	DEV(I)	RANC
0	.0000000E100		.39416145EE00		
1	,12698100E+01	.21229100E+02	.20280335E+02	·94876494E+00	1.
2	/12768100E+01	·21224740E+02	+20389740E+02	.83477970E+00	2
3	.12802340E+01	.21224750E+02	.20443583E102	·78116730E+00	4
4	+12844520E+01	+21220290E+02	+20509640EF02	·/1065027E+00	5
10	.12881490E+01	+21219490E402	20567538E+02	·65195249E+00	8
6	.129122305 F01	+21216060EF02	.20315879E±02	.60038135EF00	1 0
2	.12944000E+01	.21214040E+02	,20665433F+02	,54860716E+00	1.2
8	.12981090E+01	+21210130E+02	+20723519E+02	·48661145E+00	15
5	.13011870E+01	.21209350E+02	·20771722E+02	.43762766E400	1.7
1.0	-13044460EF01	·21206020E+02	.20022761E+02	·38325929E+00	21
1.1	.13075600E+01	.21206550E+02	+20871528F+02	.33502172E+00	23
12	+13101780E+01	+21203980E+02	+20%t2528E±02	.29145189E+00	25
1.3	.13128390E+01	+21203730E+02	.29954201E+02	.24952864E+00	27
14	.13170020E+01	+21199210E+02	.21019397E+02	·17981295E+00	30
1.5	.13184510E+01	+21200460E±02	.21042089E+02	.15837052E+00	31
16	13214810F+01	·21197290E+02	,21082542E+02	.10824846E+00	34
17	+13238330E+01	+21197170C+02	+21126376E+02	.70794380E-01	36
1.8	.132696805+01	.21193330E+02	.211°5472E102	.17857937E-01	38.
1.5	+13296430E+01	.21193120E+02	·21217365F402	-,242445621-01	37
2.0	↓13324990E+01	.21190230E+02	·212520928102	-,71861357E-01	35
24	13349480E+01	.21120120E402	・21300445円402	11025483E100	33
12.12	.133 ???105 F01	·211870208102	,总非这次这日子总统不可急	-,156/8208E100	32

6 []

Suite du rapport de l'ordinateur pour l'équation de Lorentz-Lorenz modifiée du liquide CS_2 à T=25,0 C.

23	.1:4012008401	·21186730E+02	.213814428402	194712210400	29
24	.13428250F101	·21134070E302	·214245898+02	240517576+00	28
25	.13449640E+01	·21184770E+02	.21457303E+02	-,27253287E+00	26
26	.134721205101	.211323206402	.21492508E102	31018823E+00	24
27	.13497300E+01	.211824408+02	21531942E+02	34950199E+00	22
28	.135234605+01	·21180410E+02	.21572911E+02	39250051E+00	20
2.5	.13545640E+01	·21190290E+02	.21607646E102	~,42735605F400	18
20	·13571880E±01	+21177420E+02	.21648740E+02	47131983E+00	1.6
31	.13593960E+01	.21178300E+02	.21683319E+02	-,50501878E+00	14
30	.136130408+01	.21175860EF02	.21721030E102	~.54516786E+00	1.3
3.3	,13639870E+01	,21176310E+02	.21755217E+02	57890727E+00	11
34	·13663309E+01	+21173390E+02	+21/91910E+02	61852040E+00	9
.45	·13686020E+01	.21174350E+02	.21827492E+02	65314162E+00	7
36	13709440E+01	·21172130E+02	+21864167E+02	692009092+00	6
Χ.2	·13771160E+01	·21174640E+02	.21960827E+02	78618722E400	3
38	.0000000000000	.0000000EF00	.39416145E+00		1.9

APPENDICE C

Calcul de FKK pour le liquide CC14

En phase gazeuse, l'indice "n", le coefficient diélectrique "E" et la densite "d" sont:

 $n = 1,0014815 \in 1,00302 \quad d_0 = 6,814.10^{-3} \text{ g.cm}^{-3} \quad C.1$

la relation qui relie la température et la densite en phase gazeuse est donnée par:

$$d_{\text{max}} = d_0 (T + 273)/273$$
 C.2

L'équation qui définie $\Gamma_{\rm KK}$ est:

 $\Gamma_{KK} = [(E - n^{2})/4, 2]_{1i} - [(E - n^{2})/3d]_{gas}$ $\approx \frac{1}{\pi^{2}} \int \frac{\alpha(f)}{f^{2}} df$ (C.3)

A partir de nos mesures de "n", celles de Mopsik pour "E" en phase liquide et des valeurs dans la phase gazeuse (C.1), l'équation (C.3) nous donne les valeurs de Γ_{KK} . Les calculs sont faits sur trois isothermes et les résultats sont tabulés au tableau 4.8.

.

APPENDICE D

Texte du programme général (Lorentz)

. CLD. OB FROGRAM LORENZE(FILE;INPU);OUTPU);DONNEE1;DONNEP; 原目秋時日日は「単原料報知日本、日日県務日日5、日日内村日日本、日本会に与たけ。 -----TAPE1=FILE, TAPE2=INPUD, CAPE3=OUDPUD, 「高帝臣々、自得神滅死死性。それに臣を無知自む得臣臣に、下ぬいそん=知自む兄らので 了台后到了中期登岗公司订考虑下点把任公中的印刷包里后来下点把打公中的印刷材料打了。-.i., 手合臣にいたモチムはしどろけ、 0 AUTERIA : ENANCIS SANTERRE ENDROIT : U.C.T.R. 1 272 52 NATE ί. SYSTEME : CYBER 174 ť. SAUGUE DE L'ENDICE REFRACTION EN FONCTION DE LA RUISREPRE EF HE L EQUATION DE LORENTZ-LORENZ EN FORCTION DE LA Ç DENSITE FOUR UN LIQUIDE (EX COLA). SAUVESARDETLES DUNNEES DANS LES FICHIERS CUIVANT: DONNEE1 : DELIA N / PRESSION(MPA) Ç, DONNERS: N / PRESSION(MPA) DONNEES : LORENTZ-LORENTZ - DENGITE (0/(UM##8)) 第日秋秋三日々 : 初台名はしける ・ 戸田田名名1日秋(竹戸本)。 DONNEES : ((EPS.--N**2)/2*))ENSITE) / DLRSITE(S/(Dmx2.) DONNERS : TOUTES LES DONNEES TABLEAU REAL DELTAK(0199),UK,MV(0199),UMV,TEMP,DTEMP,DELTAR(0199); DDELTAN(0:99),N(0:99),DN(0:99),LO,DLO,LAM)DA,DLAM)BA-<u>.</u>... 「月上に(0キタタシュロ(0キツワ)」ロセ(0キタワ)」ドで否定(0キタタ)。河と西:0キツタン、 <u>_</u>. NOOC+N25C+DNOOC+DN25C+DMPA(0:99)+)NBAE(0:99)+ ÷. L, DL, T(0:99), LL(0:99), PS(, DPS), L2, UL2, 4 EPS(0:99),DEPS(0:99),D050,K050,DK050,M50,DM50, ÷. DELTA(0:99), DUELTA(0:99), NO, BNO, LT, ÷ X,DX,D000,D025,K000,K025;M,N50,DN50,K500;PM800; .1_ M00,M25,N00,N25,UK000,PK025,DM00,UT(0199). .1.. DM25, DN00, DN25, Z. L1, L2, BC, DF, DDC, DDF, DL1, BUFF, BUFF1, BUFF2, BPFP3 INTEGED NETS: 6(5) QUEST1 CHARACTER TITLEXED, QUEST2%1

C FACTEUR DE DEFORMATION THERMIRUE(IT) DU S.8.4400 各省合于时代 印度 原品名印象的名子和印候 美国时候做到度时后 正则 网络罗丹和汉()名) (CM/(DEGRE CELCIUS*CM)) C PARAMETER(LT=10, LF=06) 出点取点め回う回転(USH日,3日-06)。 LONGELR I ONNE(CM) ____ 所以取为者的不可能(加高权限的高丰多速度;将管理公グ)。 と有限存留にてになく取し二層とな合単位0.111-07) LONGEUR DE LA CELLULE(LO) (CM) ſ, EPALENEER OF SAPHIR(L1) (CM) 4 1 ATM ET 20 C 新原設有層回子用民(10年1111626)。 PARAMETER(11=1.2530) PARAMETER(DL0=0.0000) PARAMETER(DL1=0,0005) C €. DEMANDE LES OFTIONS U REWIND (2) URBTE(3,90) READ(2,*,END=5)QUEST1 EF(QUEST1,NE.1.AND.QUEST1.NE.2) GOTO 5 10 REWIND (2) GRIYE(3,100) READ(2, ((A) () END=10) QUEST2 IF(QUEST2.NE./O/.ANU.QUEST2.NE./N/)GDT0 10 20 REWIND (2) 場合まてE(3,110) REAU(2,*,END=20)6(1),6(2),8(3),6(4),8(5) 90 FORMAT(ZZ, AUGEL EST LE LIQUIDE QUE VOUS VOULLZ ANALISER() <u>.....</u> /#/TAPER 1 POUR LE CS2/#/#8X#/2 POUR LE COL4/) 100 FORMAY(アメディロビら正教ビス一旦ロロSートが、千百分に回向け、手柄的回知できてために設て(ひっかう)・アスコー 110 FORMAT(7/#/DANS L ORDRE#INSCRIVED 1 OU O POPUD /F 《 CHAQUE 《 CAPHIQUE (1 = 0 B) 。 C = MON) () アメネア活在する頂白して有一般、中、原(原)イネスす道語語なる際、中、同(語)イタス ÷ 「丁乙森」(ビービーローをくむ)イップを下落40千日に感見しいは、ロービルをディー ÷. ц. T34, EPS-N2 = F(T) ,///

C C PARABETRES DU FITTING DE MURSIR(Desting) à 0 et de c C POUS LE DS2 C PROUDERT1,EQ.1) THEN 20(0=1,2928 0025=1,2554 00x=12.544 1025=10.68* 18000=0.173 25025=0.14X M00=5.10S 他忽日中有,当年令 1M00=0.282 0m25=0.230 (0) = -0, $\mathbf{z} \ge 9$ N25=-0.22N 0800=0.10a DR25=0.68: ENDIGE HE REFRACTION & C HT CS C 0 POUT LE CS2 Ċ N000=1.63/1 N250=1.6169 UN000=0.0005 DN250=0.0005 ENDLE ж. С. C PARAMETRES DU FLITING US MOPSIK(DERSIT) - A 0.25 (7 50 C POUR LE COLA Ċ IF(QUEST1,EQ.2) THEN 0000=1.6343 0025=1,5845 0050=1.5356 K000=12.446 K025=8.931 K050=7.740 15000=0.250 **10KO25=0.547** ₽К050≈0.103

	M00=3.004 M25=6.038 M50=4.835 DM00=0.592 DM00=0.592 DM25=0.34 DM50=0.179
	NOC=-0.000 N250.922 N50=-0.751 DN00=0.000 DN25=0.241 DN50=0.071
0 	INDICE DE REFRACTION à GARS ET 50 C Pour le ocl4
	NOOC=1.4709 N250=1.4559 N50C=1.4404 DNOOC=0.0005 DN25C=0.0005 DN25C=0.0005 ENDIF
	REWIND (1) REWIND (4) REWIND (5) REWIND (5) REWIND (6) REWIND (7) REWIND (8)
C C C	LECTURE DU FICHIER DE DONNEES
30	NPTS=0 READ(1,'(A)')TITLE READ(1,*)TEMP,DTEMP READ(1,*)DK,DMV READ(1,*,EKD=40)DELTAK(NPTS+1),MV(NPTS*1) NPTS=NPTS+1 GOTO 30 CONTINUE

0 C CALCHE DE LA CONGUEUR DE LA CELLULE. £ DU A LA DEFORMATION THERMIQUE С DC=(10%(TEMP-21.5)*LT) BUFF=((TEMP-21,5)*BLO)**2+(LO*))TFMP)**2+(LO*0,2)**2 DDC=LT*(DUFF**0.5) DF=(L1*(TEMP-21.5)*LS) BUFF=((TEMP+21,5)米DL1)米米2+(L1米))TEMP)米米2+(L1×0,2)米米2 原即日本に含素(RUEE本以O→S)。 1.2⇒1.0+100+2≭0F () 3420米(1)400%キアイド100(キキ2キ(2キ))5()キキミ)キキり、5 C C CALCUL DE LA PRESSION (MV EN PSI(I) EN MHA EN KDARI DELTAR(0)=0.0 $(\forall \forall : 0) = 0 \cdot 0$ DO 60 I=0,NPTS PSI=-56.17(202.15*MV(I)) DPSI=(0,09+(40864,62*DMV**2)+(0,0004*MV(I)**2))**** MPA(1)=(PSI/145.038)+0.49 1)的PA(I)=DPSI/145,038 PS1=(MPA(I)-0.47)*145.038 DPS1-MPA(I)*145.038 KBAR(I)=MPA(I)/100 DKBAR(I)=DMPA(I)/100 С -0 CALCUL DE LA DENSITE SELON-MOPSIN 0 IF (TEMP.EQ.00.) THEN X=K000/KBAR(1)+H00+N00*KBAR(1) BUFF=(DKOOO/KBAR(I))**2+DMOO**2+(K)AR())*000/*2 第日回回北市(((一尺000/(K9AR(「)まれ2))中秋00)本身長の高層(2) 本来2 DX=(BUFF+BUFF1)**0.5 D(T)=0000*(X/(X··1)) DD(1)=(((0,0005*X)/(X-1))**2+((D000*DX)/((X-1)**2) ERCIE SF()EMP,E0,25.)THER 米=Kの25/KBAR(()上M25上N25米長的海豚は3)。 BUFF=(DK025/KBAR(I))米米2(DM25キ水2+(KBAR(I)米B825)キャン 「泉田御戸生産(((一座の北島/(NSAN(()おお豆))それ2位)キャド知路所有了美洲潮漸集

C Ċ CALCUL DE DELTA N £ DELTAR(1)=(0)にTAK(1)*LAMB())()/(4%し) JE(), EQ, O) THEN ①DELTAN(1)=0.0 GOTO 50 ENDIF BUFF=(DN/DELTAN(I))**2+(DLAMDDA/LAMDDA)**2 DDELTAN(1)=DELTAN(1)*(DDEFF(0)/(1)**2)**0.5 IF(TEMP,EQ,00) NO=NOOD 1F(TEKP,20,00) HR0=NR000 IFUTUMP, E8, 25) NO=N250 0F(TEMP,E0,25) DR0=DN250 TEKP, EQ, 50) NO=N500 IF(TEMP,EQ,50) DNO=DN50C Q(I)=ROF和ELTAN 1) 第四(1)=(1回行会をお会会自動部に手合わくま)なお会うおよう。 SALCHE DE LORENTZ-LORERTZ JE(QUES(1+EQ+t) THEN M=76.13915 ELSE M=153.82315 ENDIF 1.1.(丁)=(N(T)**2-1)*M/((N(T)**2+2)*D(T)) 第日回転=(((2米好())おりが(王)))/((())米米の(こ))米米の 2017日1=(((N(E)×*2-1)*00(E))/D(E))**2 印にし(王)=(留/(印(王)案(祠(王)案案でも2)))案(8日留屋を取り目とも)を考ります。 £. C CALCUL DE EPSILON MOIN N CARRE FR FONCTION DE LA C DENSITE. C. IF (QUEST1, EQ. 1) THEN 2=4.6 ELSE Z=4.2 ENDIF 助臣に作為(王)=(臣府令(王)--阪(王)米米2)/(乙米)(丁)) (約10日円冊)(10日)(100米米ワ)(4)(20米(4)(10米(4)(10)))))))) 我切开厅了=(((日PB(王)-R(王)米米2)米)的(王))/的(王))米米会 「毎年間にで香くまう(1、くらぬ野(よ)とう米くおりの長さな目前所ま)なお食うと

SO CONTINUE
\mathbb{C} С IMPRESSION DES DONNERS DAVE LES FICHIERS С POUR LEE MOINDRES CARRE €: DC 70 I=4.8 URI)E(I,/(I2,II,A)/)I-3,6(I-3),TINEE 国際工業団(エディ(子々)二)及座子島未生。 70 CONTINUE 制度工作E(4)4(2E14.7)4)(MEA(T),DELTAN(T),T=O,NHTS) 辺尺「TE(4。1(2回14.7)1)(取州座Aミモンメ取取日にTAR(T)メリ=0。お座キーシ URETF(5,((2E14.7)()(MPA(I),N(I),I=0,RPTS) 「夏泉子子田(ちゃく(2回14、2)く)(UMPA(1)・UW(I)・1キシ・NPTS) 「規則まずに(る・(2E14,7)()(D(ま)・LL())・ま=0・NPTE> 以目型TE(6**(2E14.7)*)(0:0*0*0*1=0**P(E)) WRITE(7*1(2E14,7)1)(MPA(1)*EPS(I)*I=O*NPTS+ 以発見す形(ア・1(2回14.7)1)(向替材料(1),DFPS(1)を1キのを以降すおり WRITE(S, (2E14, 7) ()(D(I), DELTA(I), THO: NETHON 契約1千円(87~(2日14~2)~)(即時(12~0)にして高(3)71キの2枝野下に E. C IMPRESSION DES DONNEES DANS LE FICHIER í X.2 POUR LE PROGRAMME GRAPHE URITE(9, ((T40, F4, 1, I4) () TEMP, NPTS41 WRITE(9+1(T1+T1)1)1 WRITE(9,1(T2,E20,7)1)(MPA(I),I=0,NPTS) 以尺ますビ(ワッイ(T1)まま)/)2。 WRITE(9*((T2*E20*7)()(D(I)*I=0*NPTS) 夏秋1千日(9ヶイ(千1ヶミ1)く)る。 URITE(9,((T2,E20,7)))(DELTAN(1),T=0,NPTS) 毎日工業日(ワッイ(工まデビル)イ)4 URITE(9,1(T2,E20,7)1)(N(I),I=0,NPTS) URITE(9)/((1)(1)/)5 WRITE(9, (T2, E20, 7) (LL(I), I=0, NPTS) URITE(9, (()), 1, 1) () 6 WRITE(9,1(T2,E20,7)1)(EPS(T),T=0,NPTS) 山民工工ビ(ワッイ(下1ッ11)イ)フ. URITE(9, (()2, E20, 7) ()(DELTA(I), I=0, NPTS) Ċ C IMPRESSION DU TABLEAU C URITE(10,1(11)1)1 最長工学長(10)/(1×)A)/)T工学(日) 现代上下E(10,120)下用科学,D下用科学,L备所取DA,DL台所取DA 以出了了户(10,130)顶村,DHV

129

DX=(BUFF+BUFF1)**0.5 取り出り中的の2.5米(Xノ(X-1))。 DD())={((0,0005xX)/(X-3))×#2+(()):25x()/)/(((X-1)**2))×#2)*#の。3 ENDIF IF (TEMP, EQ, 50,) THEN >)=KOUOZKBAR(1)+MSOFR50*KBAR(1)) 的出口FF=(DKOSO/KBAR(I))***2+DMSO**2+(KBAR())*)的为(***2) 「窓口戸下出=(((一KOSO/(KNAR(毛)水水2))を図ちつりませたに香蕉(1))また2 DX=():UFFFBUFF1)**0.5 D(I)=D050*(X/(X-1)) DD())=(((0,0005米ス))/(X+1))米米2+((DOSO米)X)/((X+1)米水()・米ホワ))水の、ち 医秋耳口 CARCEL RE EPSILON FR FONDTION BE LA PRESSION SELON MORSIN POUR LE CS2 SFRUBESEL, LO. 1) THEN PT(TEMP, D0, 00,)THEN 毎日回日=0~1907×と取られ(J) 30日2月七三〇、〇〇〇42×12日尺(1)米米2 おり日日2日0,0000米以取AE(手)米米3 窓は阿巴3m0、00307素採取AR(1)**4 EPS(I)=2,70118+BUFF-PUFF1+BUFF2-BUFF3 家島27月=(0.000ま4)おお2千く0.00キビネド3百宮(T))おぶ2月く0.0022米に取ら尽(子)と本会されまく 2月17日1=(0,0020#KRAR(1))ままさりよりいく(0,00050まだBAR(1))まます)まえ雪 BUFF2=0,1902をく…0,055%ポアポバロAR(1)シリキ(3水0,0191ポドRAR(1))ルポロシ 追口FF3=((良口FF2=0,0.0309米4米に取高し(丁)次ポス)米辺に販売し(丁))本米2 $\mathbf{M} \in \mathbf{P} \otimes (\mathbf{T}) = (\mathbf{B} \cup \mathbf{F} \in \mathbf{F} \times \mathbf{H} \in \mathbf{F} \cap \mathbf{T} + \mathbf{B} \cup \mathbf{F} \in \mathbf{S} \cup \mathbf{X} \times \mathbf{O} \cup \mathbf{S}$ EKDIE WE (TEMP, EQ. 25.) THEN 毎日間を中の。20タフ米となら長くます。 2011年1日の、0567米に取益尺(I)米米2。 BUFF2=0.0%48考点BAR(T)来发3。 第日日日で≠○,○○174年KBAR(1)来ます。 近日(3)(1) #2, 公ろねいる米野以同日一段以日日1 米野以日日2一野以日日3 2015年=(0、00015)米キ2キ(0、0013米NNANIT))米米2キ(0、0020米三頭南に下手)本端「リッ>3 第日世紀1年(0,002*米人以内代(T)米水バラ米水シモ(0,00052米代の内に(T)米ンドニネス正 BUFF2=0.20974(-0.0567*2*KBAR(T))4(3*0.140*KBAR(T))**** |翌日臣臣は中(く翌日臣臣兄一〇王〇〇主アネ米カ第に殺さ出てま)れならう水御教をさら(ようう米太正 $D \in P(S(T) = (B \cup F \cap B \cup F \cap B \cup F \cap B \cup F \cap B) \times (S)$ ENDIF ENDIF and the second secon CALCOL DE EPSILON YN FONDIION DE NA PRISSION BELON MOPSIN POUR LE COLA FRONDERED, FRENCE TEXTERPIES COLD THER

130

第11日日1日0,0341米KB68(1)米米2 2P8(1)=2.27839+BUEE-BUEET1 股目FF=(0.00016)米末24(0.0014米ドBAR(1))米水24(0.0027米にWAR(1)米ホア・米キ会 「新聞阿阿市=((0.1429~0.0340米2米と新昌殿(3))※自然海台代(7))米米シー DEPS(I)=(BUFF+DUFF1)**0.5 ENDIF IF (TEMP+EQ.25.) THEN BUFF=0.1S71xKBAR(I) BUFF1=0,0566米区BAR(1)米米2 BUFF2=0,0133%KBAR(I)%%3 EPS())=2.63414+BUFF-BUFF1+BUFF2 第14日本(0,00014)ままだという、0012米に取ら出(1)ア本ボジン(0,0023米民もらし、アンボルン・ネジン BUFF1+(0.0013*KBAR(1)**A)**2 第日間に2回の、1671中に一0、0566米2米回商屋(I))うりしと歩く、0132米回転には1・メックト BUFF3=(BUFF2*BKBAR(I))**2 DEPS(1)=(BUFF)8UFF1+BUFF3)**0.5 ENDIF UF (TUMP, EQ. 50.) THEN 我们日日半0,2020米长期高限(工) BUFF1=0,1007*KBAR(1)**2 BUFF3=0,00%04米KB6R(丁)米米4 EPS(I)=2.17870+0UFF-BUFF1+BUFF2-BUFF3 第8日日年(0,00013)米米2+(0,0011米ド防商民(1))米米2+(0,0025米ド時高には1)米に (3.2) 第11日日本中(0・0020米KB内食(T)米米ろ)米米2ヶ(0・00050米KB内計(1)米米将つ 米米。 毎日円月2≠0,2020十(−0,1007米2米NEAに(丁))十(3米0,0459米日3Aに(丁→2×2)→ 記UFFF3年((RUFF2-0.0090内米4米KBAR(主)米ルス)米はわれられ(主)・ル米比 DEPS(I)=(BUFF+BUFF1+BUFF3)**0.5 ENDIE ENDIF CALCUL DE LA DEFORMATION TOTALE DE LA CELLULE EN CALCULANT SA DEFORMATION SOUS LA PRESSION EXERCEE A 25 C BUFF=0,00724米ドBAR(I) BUFF1=0.00506*KBAR(1)**2 BUFF2=0,00281*KRAR(I)**3 BUFF3=0,000584*KBAR(I)**4 T(I)=0.0000513NUFF-BUFF14NUFF3 BUF:=(0,000023)**24(0,00015*KBAR(T))**24(0,000B3*KBAR(T)***)*** BUFF1=(0,00025*KBAR(())**3)**2+(0,000083*KBAR(1)**4)**2 |第日日日2日の、00724キ(一〇、00506米2米回取合民(王))キ(3米〇、〇〇201米回路長日台長(王)米米21 第日回回回事((第日回回2-0,000回用4343K8内公(T)地址区)米取制的高时(T)地米区 お子(丁)=(取目FF+取目FF1+取目FF3)米米のよび しゃし 2 そ 2 寒王(エ) 頂側=((頂目2米米2)+(2米頂T(手))*米2)*米(15

BUFF=0,1429*NBAR(I)

```
WRITE(10,140)(DELTAK(I),MV(I),MPA(I),DMPA(T),D((TAR(I))
                  DINELIAN(「)・N(I)・0R(T)・2R(T)ながる。
   4-
                  2×H(I)×DH(I)+EPS(I)+D(PS(I)+I=O(NPTS)
    国民王王朝(そのよく(アファファキキシャント
    WRITE(10, ((1X, A))) TITLE
    WE(TE(10,120)TEMP,DTEMP,LAMBUA,DLAMBDA
    WRITE(10,150)
    WRITE(10,100)(MPA(I),DMPA(I),D(I),DU(I),UL(I),DUL()),
                  印度して合(1)ヶ市取用して合(1)ヶ市(1)ヶ市下(1)ヶ市=OF以降でなり
    )F(QUEST2,EQ,'O')THEN
      CALL ASCII
      JETTE(Z,170)
      CALL NORMAL
      は我進了日にきょく(北父ヶ石)く)下手下し日

最快速でE(B;100)「EMP、BTEMP、LAMBDA、DLAMBDA<br/>

      見民まで行くる。までのとれた。れたい
      副窓工TF(きょす40)(DELTAK(T)。MV(T)。MFA(T)。DMMMA(T)。角形にするの(す)。
                    取自医して合材するとすれててきょ自縁くしきで対くてきぬめとす
                    2米総(工)米面村(工)・田田島(工)・田田県島(工)・丁中の(内口)島)
      CALL ACCIL
      WRITE(3,170)
      CALL RORMAL
      URINH(Z#1(1X;A)1)TITLE
      WRITE(3,120)TEMP,DTEMP,LAMBUA,DLAMBUA
      GRITE(3,150)
      URITE(3,150)(MPA(I),DMPA(I),DD(I),DD(I),EE((I),DE(()),
                    DELTA(I), UDELTA(I), T(I), DT(I), I=0, NETS)
    ENDIE
120 FORMAT(/,11X)/TEMP: /yF5,2y/+~/,F3,2y/ C/,
           | 存業ッイに合所取用合業イッビル()、存実イヤーイッビク・キャイ | じゃイッノン
130 HORMAT(1X,109(1HH))//4X,/DELTAK/,2X,/DHLTA MV/,4X,
   ÷
           PRESSION(, 9X, ORLTA N', 14X, 'N', 15X, 'N' CARRE',
           12X+ 'EPSILON', /, 4X, '+- ', F4.1, 4X, '+-', F3, 2, -
   .ų.
           7X**(MP6)/*/*1X*109(1H-)*/)
140 FORMAT(2X)F7.1,4X)F6.2,4X,F6.2,(+-(,F4.3,4X)+6.5,
   -L.
           イキーイッセム・ロッキメのデフィロッイキーイッドム・ロッキメッドフィロッイナーイッ
           F6,5,4X,F7,5,(+-(,F6,5))
(150) 上島民営商子(1米・98(11日ー)・ノ・6米・72歳日急島王田区(15米6米・7月日報島王王臣(16日5)ド)イ・10米。
           (L+L1,10X,(EPS - N CARRE)/(4,2米)EN)1,8X,(DEFORMA)198(05)1.
   ÷
           /#8X#(MPA)/#10X#/6/(CM##3)/#52X#
   -----
             (CELLULE SOUS LA PRESSION(+/+1X+98(1H+)+/)
   .і.
180、トロ設督合任(4%・ドろ、2ッイホーイッド4、3ヶ4Xッドフ、S・イキーイ・ドム、Sヶ4Xッド8、Sヶイキーイッ
           F5.4,6X,F8.5,1+-1,F6.5,6X,E9.4,
   4-
            (+-(*E7.2)
   +
170 FORMAT((n>E10D()
    STOP
    END
```

132