3 research outputs found

    Intriguing Properties and Applications of Functional Magnetic Materials

    Get PDF
    Functional magnetic materials, also called the smart materials of the future, are a group of materials having important and interesting physical properties, which can be affected when an external magnetic field is applied. They are intriguing models that have a strong impact on improving different technologies. Their magnetic response to an external magnetic field can be represented as paramagnetic, diamagnetic, ferromagnetic, or antiferromagnetic. Compared with bulk materials, they show uncommon magnetic behavior as a result of their surface/interface effects, electronic charge transfer, and magnetic interactions. They can be used in different vital applications like data storage systems, refrigeration, magnetic recording, and medical studies. In this chapter, essential attractive magnetic properties that are relevant to different applications will be explained

    Potential Environmental and Health Implications from the Scaled-Up Production and Disposal of Nanomaterials Used in Biosensors

    No full text
    Biosensors often combine biological recognition elements with nanomaterials of varying compositions and dimensions to facilitate or enhance the operating mechanism of the device. While incorporating nanomaterials is beneficial to developing high-performance biosensors, at the stages of scale-up and disposal, it may lead to the unmanaged release of toxic nanomaterials. Here we attempt to foster connections between the domains of biosensors development and human and environmental toxicology to encourage a holistic approach to the development and scale-up of biosensors. We begin by exploring the toxicity of nanomaterials commonly used in biosensor design. From our analysis, we introduce five factors with a role in nanotoxicity that should be considered at the biosensor development stages to better manage toxicity. Finally, we contextualize the discussion by presenting the relevant stages and routes of exposure in the biosensor life cycle. Our review found little consensus on how the factors presented govern nanomaterial toxicity, especially in composite and alloyed nanomaterials. To bridge the current gap in understanding and mitigate the risks of uncontrolled nanomaterial release, we advocate for greater collaboration through a precautionary One Health approach to future development and a movement towards a circular approach to biosensor use and disposal
    corecore