17 research outputs found

    New Approaches for Competing Microbial Resistance and Virulence

    Get PDF
    The spread of multidrug-resistant pathogens together with the development of fatal cases of infectious microorganisms is on the rise. Therefore, there must be new approaches for combating pathogenic microorganisms, either by overcoming antibiotic resistance or via inhibiting their virulence factors. Several virulence factors extremely increase the antimicrobial resistance of various species of pathogens; as a result, the screening of antivirulence agents has gained more and more attention recently. In this aspect, non-traditional strategies that are considered promising in overcoming virulence and pathogenicity of microorganisms will be discussed including; quorum sensing inhibition, antibiofilm, control of the global regulators, bacteriocins and bacteriophages. Applying these methods could provide innovative approaches for competing microbial resistance and virulence

    Effects of temperature, growth phase and luxO-disruption on regulation systems of toxin production in Vibrio vulnificus strain L-180, a human clinical isolate

    Get PDF
    Vibrio vulnificus is a halophilic estuarine bacterium while it causes fatal septicemia or necrotizing wound infections in humans. This pathogen secretes the metalloprotease (V. vulnificus protease: VVP) and the cytolysin (V. vulnificus hemolysin: VVH) as protein toxins; however, their production was coordinated in response to the bacterial cell density. This regulation is termed quorum sensing (QS) and is mediated by the small diffusible molecule called autoinducer 2 (AI-2). In the present study, we investigated effects of disruption of luxO encoding a central response regulator of the QS circuit, as well as effects of temperature and growth phase, on the toxin production by V. vulnificus. Disruption of luxO was found to increase VVP production and expression of its gene vvpE. The expression of smcR, crp and rpoS, of which products positively regulate vvpE expression, and luxS encoding the AI-2 synthetase were also significantly increased. On the other hand, the luxO disruption resulted in reduction of VVH production and expression of its gene vvhA. Expression of other two genes affecting the QS circuit, luxT and rpoN, were also significantly decreased. The regulation systems of VVP production were found to exert their action during the stationary phase of the bacterial growth and to be operated strongly at 26 °C. By contrast, those of VVH production apparently started at the log phase and were operated more effectively at 37 °C

    Regulation of Vibrio mimicus metalloprotease (VMP) production by the quorum-sensing master regulatory protein, LuxR

    Get PDF
    Vibrio mimicus is an estuarine bacterium, while it can cause severe diarrhea, wound infection, and otitis media in humans. This pathogen secretes a relatively important toxin named V. mimicus metalloprotease (VMP). In this study, we clarified regulation of the VMP production according to the quorum-sensing master regulatory protein named LuxR. First, the full length of luxR gene, encoding LuxR, was detected in V. mimicus strain E-37, an environmental isolate. Next, the putative consensus binding sequence of LuxR protein could be detected in the upstream (promoter) region of VMP encoding gene, vmp. Finally, the effect of disruption of luxR gene on the expression of vmp and production of VMP was evaluated. Namely, the expression of vmp was significantly diminished by luxR disruption and the production of VMP was severely altered. Taken together, here we report that VMP production is under the positive regulation of the quorum-sensing master regulatory protein, LuxR

    Emergence of Multidrug-resistant Carbapenemases and MCR-1 Producing Pseudomonas aeruginosa in Egypt

    Get PDF
    Pseudomonas aeruginosa is an expedient Gram-negative bacterium, which is characterized by its ability to acquire antimicrobial resistance. In this study, 56 unrepeatable carbapenem-resistant P. aeruginosa isolates were gathered from various clinical sources from hospitals in Cairo and Mansoura universities. The isolates exhibited diminished susceptibility towards carbapenems, quinolones, aminoglycosides and chloramphenicol by using disc diffusion method. Carbapenemase production was confirmed among the isolates, where all the 56 P. aeruginosa isolates harboured carbapenemase genes including blaVIM (43 isolates), blaKPC (38 isolates), blaNDM-1 (17 isolates), blaIMP (16 isolates) and blaOXA-48 (15 isolates). Among the isolates, 13 carried only one carbapenemase gene, while 43 isolates carried multiple carbapenemase genes. MCR-1 production was confirmed in 10 of the tested isolates by detecting the mcr-1 gene encoding for the colistin resistance. Enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR) evaluation showed that the tested isolates were unrelated to each other. Therefore, this study rises the danger of emergence of MDR P. aeruginosa resistant to carbapenems coupled with other antimicrobials including colistin, which is regarded as the last reservoir for the management of infections caused by MDR Gram-negative pathogens. Early inspection of resistance patterns in MDR organisms is an important tool to control and prevent infections via limiting the spread of these pathogens

    Presence of Nitric Oxide-Sensing Systems in the Human Pathogen Vibrio vulnificus

    Get PDF
    Vibrio vulnificus is a halophilic estuarine bacterium, but this species causes fatal septicemia in humans. V. vulnificus may encounter many kinds of stresses either in the natural environment or in the human body. One of the striking stresses is the exposure to the reactive oxygen species including nitric oxide (NO). The present study revealed that NO could participate in the regulation of the V. vulnificus community behavior. When the bacterium was cultivated in the presence of sub-lethal doses of an NO donor, the expression of the genes encoding NO-detoxifying enzymes was significantly increased. The NO donor was also found to cause significant increase in production of a metalloprotease, a putative virulence factor, by the bacterium

    Role of the Histone-Like Nucleoid Structuring Protein (H-NS) in the Regulation of Virulence Factor Expression and Stress Response in Vibrio vulnificus

    Get PDF
    Temperature is one of the important parameters regulating the expression of virulence factors in bacteria. The global regulator, a histone-like nucleoid structuring protein (H-NS), is known to play a crucial role in this regulation. In the present study, we first clarified the role of H-NS in the temperature-dependent regulation of virulence factor production in Vibrio vulnificus, including that of the cytolytic toxin (V. vulnificus hemolysin: VVH) and the proteolytic enzyme (V. vulnificus protease: VVP). The expression of hns itself was subjected to temperature regulation, where hns was expressed more at 26℃ than at 37℃. VVH production and the expression of its gene vvhA were increased by disruption of the hns gene. H-NS appeared to affect the vvhA expression by the well-documented transcriptional silencing mechanism. On the other hand, hns disruption resulted in the reduction of VVP production and the expression of its gene vvpE. H-NS was suggested to positively regulate vvpE expression through the increase in the level of the rpoS mRNA. Moreover, H-NS was found to contribute to the survival of V. vulnificus in stressful environments. When compared to the wild type strain, the hns mutant exhibited reduced survival rates when subjected to acidic pH, hyperosmotic and oxidative stress

    Antimicrobial and antiquorum-sensing activity of <i>Ricinus communis</i> extracts and ricinine derivatives

    No full text
    <p>Ricinine (<b>1</b>), a known major alkaloid in <i>Ricinus communis</i> plant, was used as a starting compound for the synthesis of six ricinine derivatives; two new and four known compounds. The new derivatives; 3-amino-5-methyl-1<i>H</i>-pyrazolo[4,3-c]pyridin-4(5<i>H</i>)-one (<b>2</b>), and 3-amino-5-methyl-1-(phenylsulfonyl)-1<i>H</i>-pyrazolo[4,3-c]pyridin-4(5<i>H</i>)-one (<b>3</b>), as well as the previously prepared derivatives (<b>4</b>–<b>7</b>) were subjected for antimicrobial and antiquorum-sensing evaluation in comparison to different <i>R. communis</i> extracts. Acetyl ricininic acid derivative (<b>5)</b> showed the highest antimicrobial activity among all tested derivatives against <i>Staphylococcus aureus</i>, <i>Escherichia coli</i>, <i>Klebsiella pneumoniae</i>, <i>Pseudomonas aeuroginosa</i> and <i>Candida albicans</i>. However, compound <b>7</b> (4-methoxy-1-methyl-2-oxo-1,2-dihydropyridine-3-carboxamide) showed the highest antiquorum-sensing activity among all tested compounds and extracts. These findings proved the usefulness of ricinine as a good scaffold for the synthesis of new antimicrobial and antiquorum-sensing derivatives in spite of its poor contribution to the antimicrobial activity of the plant extracts.</p

    Changes of Gut-Microbiota-Liver Axis in Hepatitis C Virus Infection

    No full text
    The gut&ndash;liver-axis is a bidirectional coordination between the gut, including microbial residents, the gut microbiota, from one side and the liver on the other side. Any disturbance in this crosstalk may lead to a disease status that impacts the functionality of both the gut and the liver. A major cause of liver disorders is hepatitis C virus (HCV) infection that has been illustrated to be associated with gut microbiota dysbiosis at different stages of the disease progression. This dysbiosis may start a cycle of inflammation and metabolic disturbance that impacts the gut and liver health and contributes to the disease progression. This review discusses the latest literature addressing this interplay between the gut microbiota and the liver in HCV infection from both directions. Additionally, we highlight the contribution of gut microbiota to the metabolism of antivirals used in HCV treatment regimens and the impact of these medications on the microbiota composition. This review sheds light on the potential of the gut microbiota manipulation as an alternative therapeutic approach to control the liver complications post HCV infection

    Changes of Gut-Microbiota-Liver Axis in Hepatitis C Virus Infection

    No full text
    The gut–liver-axis is a bidirectional coordination between the gut, including microbial residents, the gut microbiota, from one side and the liver on the other side. Any disturbance in this crosstalk may lead to a disease status that impacts the functionality of both the gut and the liver. A major cause of liver disorders is hepatitis C virus (HCV) infection that has been illustrated to be associated with gut microbiota dysbiosis at different stages of the disease progression. This dysbiosis may start a cycle of inflammation and metabolic disturbance that impacts the gut and liver health and contributes to the disease progression. This review discusses the latest literature addressing this interplay between the gut microbiota and the liver in HCV infection from both directions. Additionally, we highlight the contribution of gut microbiota to the metabolism of antivirals used in HCV treatment regimens and the impact of these medications on the microbiota composition. This review sheds light on the potential of the gut microbiota manipulation as an alternative therapeutic approach to control the liver complications post HCV infection
    corecore