13 research outputs found

    Dielectronic recombination data for dynamic finite-density plasmas : XIV. The aluminium isoelectronic sequence

    Get PDF
    Context. A comprehensive study of dielectronic recombination (DR) for the aluminum-like isoelectronic sequence has been completed. Aims. Total and final-state resolved DR rate coefficients for the ground and metastable initial levels of 17 ions between Si ii and Zn xviii are presented. Methods. Within an isolated-resonance, distorted-wave (IPIRDW) approximation, multiconfiguration Breit-Pauli (MCBP) calculations are carried out for the total and partial DR rate coefficients of Al-like ions. Both Δnc = 0 and Δnc = 1 core-excitations are included, using LS-coupled and intermediate-coupling (IC) schemes. Results. The inaccuracies of earlier empirical data and/or LS-coupling calculations, particularly at lower temperatures characteristic of photoionized plasmas, is demonstrated by comparison with present, state-of-the-art IC DR rate coefficients. Fine-structure effects are found to increase the DR rate coefficient at low temperatures and decrease it at high temperatures, rendering earlier LS calculations incomplete. Good agreement is found between present IC results and experimental measurements

    K-Shell Photoabsorption Studies of the Carbon Isonuclear Sequence

    Full text link
    K-shell photoabsorption cross sections for the isonuclear C I - C IV ions have been computed using the R-matrix method. Above the K-shell threshold, the present results are in good agreement with the independent-particle results of Reilman & Manson (1979). Below threshold, we also compute the strong 1s -> np absorption resonances with the inclusion of important spectator Auger broadening effects. For the lowest 1s -> 2p, 3p resonances, comparisons to available C II, C III, and C IV experimental results show good agreement in general for the resonance strengths and positions, but unexplained discrepancies exist. Our results also provide detailed information on the C I K-shell photoabsorption cross section including the strong resonance features, since very limited laboratory experimental data exist. The resultant R-matrix cross sections are then used to model the Chandra X-ray absorption spectrum of the blazar Mkn 421

    Electron-impact ionization of Al2+

    No full text

    Electron-impact ionization of Al

    Get PDF
    A general variant of coupled-mode-theory for frequency domain guided wave problems in integrated optics is discussed. Starting point is a physically reasonable field template, that typically consists of a few known, most relevant modes of the optical channels in the structure, superimposed with coefficient functions of the respective - in principle arbitrary - propagation coordinates. Discretization of these unknown functions into 1-D finite elements leads to an approximation of the optical field in terms of a linear superposition of structure-adapted, more or less localized modal elements. By variational restriction of a functional representation of the full 2-D/3-D vectorial first order frequency domainMaxwell equations (with transparent influx boundary conditions for inhomogeneous exterior), one can then reduce the problem to a small- to moderate-sized system of linear equations. 2-D examples for a crossing of dielectric waveguides and a grating-assisted rectangular resonator illustrate the performance of the approach

    Single and double photoionization of Be and Mg

    Get PDF
    Abstract A new version of the time-dependent close-coupling method is used to calculate the single and double photoionization of the Be and Mg atoms. Total cross sections are calculated using an implicit time propagator with a core orthogonalization method on a variable radial mesh. The double to single photoionization cross section ratios are found to be in good agreement with experiment for both Be and Mg

    Atomic collision processes for astrophysical and laboratory plasmas

    Get PDF
    An accurate knowledge of atomic collision processes is important for a better understanding of many astrophysical and laboratory plasmas. Collision databases which contain electron-impact excitation, ionization, and recombination cross sections and temperature dependent rate coefficients have been constructed using perturbative distorted-wave methods and non-perturbative R-matrix pseudo-states and time-dependent close-coupling methods. We present recent atomic collision results
    corecore