4 research outputs found

    Improving management of future coastal development in Qatar through ecosystem-based management approaches

    No full text
    The coastline of Qatar is a rich mosaic of productive and diverse ecosystems including mangrove forests, intertidal mudflats (sabkha), seagrass beds, and coral reefs. These ecologically interconnected ecosystems contain a substantial proportion of Qatar's total biodiversity, and support an estimated 97% of the >US$ 67 million in annual commercial fisheries, the highest value resource sector after petroleum. The extreme environmental conditions that characterize Qatar has led to fauna that are robust compared with other regions, but makes them highly sensitive to further pressure from anthropogenic stress. These vulnerable ecosystems have come under increasing pressure in recent decades as a result of dramatic expansion of coastal development, and threats to these ecosystems are likely to accelerate in the coming years as Qatar's economy and population continue to grow. Although environmental regulation had historically lagged behind the rapid pace of development, in recent years Qatar's leadership has aggressively expanded environmental management as a result of the growing awareness of the importance of coastal ecosystems. While these improvements are encouraging, management remains challenged by its current sectorial, project-driven focus. Ecosystem-based management (EBM) offers an opportunity to overcome these challenges by integrating impacts from across all major activities in multiple sectors and considering their cumulative effects on ecosystem services and products. While an EBM approach would require modest reprioritizing of existing processes and attention to addressing deficiencies in data needed to support decision making, it has the potential to greatly enhance the efficiency and effectiveness of coastal zone management. The article closes by summarizing a recently initiated research project on coral reefs and seagrass beds in Qatar which can serve as a model for development of the EBM approach for other coastal ecosystems in Qatar.This publication was made possible by the NPRP award [NPRP8-952-1-186] from the Qatar National Research Fund (a member of The Qatar Foundation) through the National Priority Research Program. The statements made herein are solely the responsibility of the authors. Appendix AScopu

    Nutritive effect of dust on microbial biodiversity and productivity of the Arabian Gulf

    No full text
    The Arabian Gulf is exposed to intensive dust storms during summer until early winter. We investigated the nutritive effect of the dust on microbial biodiversity of the water column and the productivity of the Gulf. We collected samples from three sites in a transect perpendicular to the shore in March (before the strong dust storms) and in October (after the dust season) in 2013. At the three sites, we sampled the water column at three depths, and see-floor sediments using a HAPS corer. We also sampled the sand dunes that are the source of the dust. We analyzed the samples for pigments, microbial community composition using a 16S rRNA analysis, and nutrients. Our results showed that species richness and biodiversity were higher in October than in March. The relative abundances of key-player microorganisms were strongly pronounced in October. We assume that the dust rapidly sinks to the seafloor where the nutrients Fe and P are liberated through iron reduction. Assuming that all phosphate diffusing from the seafloor originates from the dust particles after deposition, we estimated a contribution of minimum 30,000 tons of fish produced every year in the Gulf. We found no close temporal coupling between dust storms and productivity. This is because nutrient liberation from the seafloor is slow and its transport from the seafloor to the photic zone by circulation processes is irregular. This study highlights the importance of dust as a source of nutrients in the Gulf ecosystem

    Mercury accumulation in Lethrinus nebulosus from the marine waters of the Qatar EEZ

    No full text
    Total mercury (THg) and methylmercury (MeHg) were recorded in the commercial demersal fish Lethrinus nebulosus, caught from six locations in Qatar EEZ (Exclusive Economic Zone). Concentrations of THg decreased in the order: liver ˃ muscle ˃ gonad. THg concentrations in fish tissue ranged from 0.016 ppm in gonad to 0.855 ppm (mg kg−1 w/w) in liver tissues, while concentrations in muscle tissue ranged from 0.24 to 0.49 ppm (mg kg−1 w/w) among sampling sites. MeHg concentrations were used to validate food web transfer rate calculations. Intake rates were calculated to assess the potential health impact of the fish consumption. There is no major threat to human health from the presence of Hg in L. nebulosus, based upon reasonable consumption patterns, limited to no more than three meals of L. nebulosus per week.Qatar National Research Fund (QNRF) under the National Priorities Research Program (NPRP) award number NPRP 09-505-1-08
    corecore