137 research outputs found

    Reduced Plasma Levels of 25-Hydroxycholesterol and Increased Cerebrospinal Fluid Levels of Bile Acid Precursors in Multiple Sclerosis Patients

    Get PDF
    Multiple sclerosis (MS) is an autoimmune, inflammatory disease of the central nervous system (CNS). We have measured the levels of over 20 non-esterified sterols in plasma and cerebrospinal fluid (CSF) from patients suffering from MS, inflammatory CNS disease, neurodegenerative disease and control patients. Analysis was performed following enzyme-assisted derivatisation by liquid chromatography-mass spectrometry (LC-MS) exploiting multistage fragmentation (MS n ). We found increased concentrations of bile acid precursors in CSF from each of the disease states and that patients with inflammatory CNS disease classified as suspected autoimmune disease or of unknown aetiology also showed elevated concentrations of 25-hydroxycholestertol (25-HC, P < 0.05) in CSF. Cholesterol concentrations in CSF were not changed except for patients diagnosed with amyotrophic lateral sclerosis (P < 0.01) or pathogen-based infections of the CNS (P < 0.05) where they were elevated. In plasma, we found that 25-HC (P < 0.01), (25R)26-hydroxycholesterol ((25R)26-HC, P < 0.05) and 7α-hydroxy-3-oxocholest-4-enoic acid (7αH,3O-CA, P < 0.05) were reduced in relapsing-remitting MS (RRMS) patients compared to controls. The pattern of reduced plasma levels of 25-HC, (25R)26-HC and 7αH,3O-CA was unique to RRMS. In summary, in plasma, we find that the concentration of 25-HC in RRMS patients is significantly lower than in controls. This is consistent with the hypothesis that a lower propensity of macrophages to synthesise 25-HC will result in reduced negative feedback by 25-HC on IL-1 family cytokine production and exacerbated MS. In CSF, we find that the dominating metabolites reflect the acidic pathway of bile acid biosynthesis and the elevated levels of these in CNS disease is likely to reflect cholesterol release as a result of demyelination or neuronal death. 25-HC is elevated in patients with inflammatory CNS disease probably as a consequence of up-regulation of the type 1 interferon-stimulated gene cholesterol 25-hydroxylase in macrophage

    Interplane cross-saturation in multiphase machines

    Get PDF
    The use of electrical machines in electric vehicles and high-power drives frequently requires multiphase machines and multiphase inverters. While appropriate mathematical models under the linear magnetic conditions are readily available for multiphase machines, the same cannot be said for the models of the saturated multiphase machines. This paper examines the saturation in an asymmetrical six-phase induction machine under different supply conditions and addresses the applicability of the existing saturated three-phase machine models for representation of saturated multiphase machines. Specifically, the mutual coupling between different sequence planes in the vector space decomposed model under saturated conditions is analyzed. The paper relies on analytical considerations, finite element analysis and experimental results. It is shown that the saturation of the main flux path is influenced by the current components in the orthogonal (non-fundamental) sequence plane. This implies the need to develop new multiphase machine models which take this effect into account

    Growth of molten core debris pools in concrete. Progress report, April 1--June 30, 1979. [LMFBR]

    Get PDF
    The heat and mass transfer processes taking place in molten core debris/concrete systems have been experimentally investigated. Two types of experiments have been conducted. The first experiment simulates the growth of a molten debris pool in a composite sacrificial bed. This experiment models debris pool growth in an inner, low-melting point, sacrificial material zone followed by a melting attack on the concrete bed. The purpose of the inner zone is to quickly melt and dilute the debris pool so that its subsequent downward growth in the concrete may be slowed. In the second experiment a two-layer immiscible liquid system is volumetrically heated and allowed to melt into a low-density gas-releasing solid bed which is miscible in the initially-higher-density bottom liquid. The solid melts, mixes with, and dilutes the bottom liquid pool until its density is lower than that of the top liquid. At this time pool inversion occurs and the immiscible liquid sinks to the bottom of the pool displacing the now lighter fuel-concrete simulant

    Growth of molten core debris pools in concrete. Part II. A. Pool growth in composite beds; B. Effect of overlaying steel layers. Final report, March 1, 1978-September 30, 1979. [LMFBR]

    No full text
    The heat and mass transfer processes taking place in molten core debris/concrete systems have been experimentally investigated. Two types of experiments have been conducted. The first experiment simulates the growth of a molten debris pool in a composite sacrificial bed. This experiment models debris pool growth in an inner, low-melting point, sacrificial material zone followed by a melting attack on the concrete bed. The purpose of the inner zone is to quickly melt and dilute the debris pool so that its subsequent downward growth in the concrete may be slowed. In the second experiment a two-layer immiscible liquid system is volumetrically heated and allowed to melt into a low-density gas releasing solid bed which is miscible in the initially-higher-density bottom liquid. The solid melts, mixes with, and dilutes the bottom liquid pool until its density is lower than that of the top liquid

    Dynamics of Vertical Annular Liquid Jets

    No full text
    corecore