16 research outputs found

    CXCL16 and oxLDL are induced in the onset of diabetic nephropathy

    Get PDF
    Diabetic nephropathy (DN) is a major cause of end-stage renal failure worldwide. Oxidative stress has been reported to be a major culprit of the disease and increased oxidized low density lipoprotein (oxLDL) immune complexes were found in patients with DN. In this study we present evidence, that CXCL16 is the main receptor in human podocytes mediating the uptake of oxLDL. In contrast, in primary tubular cells CD36 was mainly involved in the uptake of oxLDL. We further demonstrate that oxLDL down-regulated α3-integrin expression and increased the production of fibronectin in human podocytes. In addition, oxLDL uptake induced the production of reactive oxygen species (ROS) in human podocytes. Inhibition of oxLDL uptake by CXCL16 blocking antibodies abrogated the fibronectin and ROS production and restored α3 integrin expression in human podocytes. Furthermore we present evidence that hyperglycaemic conditions increased CXCL16 and reduced ADAM10 expression in podocytes. Importantly, in streptozotocin-induced diabetic mice an early induction of CXCL16 was accompanied by higher levels of oxLDL. Finally immunofluorescence analysis in biopsies of patients with DN revealed increased glomerular CXCL16 expression, which was paralleled by high levels of oxLDL. In summary, regulation of CXCL16, ADAM10 and oxLDL expression may be an early event in the onset of DN and therefore all three proteins may represent potential new targets for diagnosis and therapeutic intervention in DN

    ADAM10 is expressed in human podocytes and found in urinary vesicles of patients with glomerular kidney diseases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The importance of the Notch signaling in the development of glomerular diseases has been recently described. Therefore we analyzed in podocytes the expression and activity of ADAM10, one important component of the Notch signaling complex.</p> <p>Methods</p> <p>By Western blot, immunofluorescence and immunohistochemistry analysis we characterized the expression of ADAM10 in human podocytes, human urine and human renal tissue.</p> <p>Results</p> <p>We present evidence, that differentiated human podocytes possessed increased amounts of mature ADAM10 and released elevated levels of L1 adhesion molecule, one well known substrate of ADAM10. By using specific siRNA and metalloproteinase inhibitors we demonstrate that ADAM10 is involved in the cleavage of L1 in human podocytes. Injury of podocytes enhanced the ADAM10 mediated cleavage of L1. In addition, we detected ADAM10 in urinary podocytes from patients with kidney diseases and in tissue sections of normal human kidney. Finally, we found elevated levels of ADAM10 in urinary vesicles of patients with glomerular kidney diseases.</p> <p>Conclusions</p> <p>The activity of ADAM10 in human podocytes may play an important role in the development of glomerular kidney diseases.</p

    Chemical Profiling and Molecular Docking Study of <i>Agathophora alopecuroides</i>

    No full text
    Natural products continue to provide inspiring chemical moieties that represent a key stone in the drug discovery process. As per our previous research, the halophyte Agathophora alopecuroides was noted as a potential antidiabetic plant. However, the chemical profiling and highlighting the metabolite(s) responsible for the observed antidiabetic activity still need to be investigated. Accordingly, the present study presents the chemical profiling of this species using the LC-HRMS/MS technique followed by a study of the ligand–protein interaction using the molecular docking method. LC-HRMS/MS results detected twenty-seven compounds in A. alopecuroides extract (AAE) belonging to variable chemical classes. Among the detected compounds, alkaloids, flavonoids, lignans, and iridoids were the most prevailing. In order to highlight the bioactive compounds in AAE, the molecular docking technique was adopted. Results suggested that the two alkaloids (Eburnamonine and Isochondrodendrine) as well as the four flavonoids (Narirutin, Pelargonidin 3-O-rutinoside, Sophora isoflavanone A, and Dracorubin) were responsible for the observed antidiabetic activity. It is worth mentioning that this is the first report for the metabolomic profiling of A. alopecuroides as well as the antidiabetic potential of Isochondrodendrine, Sophora isoflavanone A, and Dracorubin that could be a promising target for an antidiabetic drug

    Synthesis and Cytotoxic Activity of Acridine Derivatives Substituted with Benzimidazole, Benzoxazole and Benzothiazole

    No full text
    Two novel series of 2-(Benzo[d]imidazole/oxazole/thiazole-2-yl))acridine-9(10H)-oneIVa-cand10-(2-((4- (Benzo[d]imidazole/oxazole/thiazole-2-yl)phenyl)amino)-2-oxoethyl)-9-oxo-9,10-dihydroacridine-4-carboxylic acidVIIa-cwere synthesized.The antitumor activity of the prepared compounds was evaluated against human breast cancer (MCF-7), hepatocellular carcinoma (HepG-2) a nd colon cancer (HCT-116) cell lines using Sulphorhodamine-B (SRB) assay method.Doxorubicin was used as a reference standard. Most of the tested compounds showed potent antitumor activity against HCT-116 cell line with IC50 range equal 4-31µM/mland the compoundVIIcwas the best active one (IC50 = 4.75 µM/ml). VIIashowed the same activity compared to the effect of the reference drug doxorubicin on Hep-2 cell line(IC50 = 3.75 µM/ml). Allof the tested compoundsshowed weak activity against MCF-7 cell line(IC50 = 5.01 µM/ml)

    A preliminary study on combination therapy of artemisinin dimer oxime and topotecan against nonsmall cell lung cancer in mice

    No full text
    Background: Artemisinin dimer oxime – dimer molecule synthesized from artemisinin possesses high bioavailability and marked in vitro anticancer activities against solid tumor-derived cell lines, endothelial cell proliferation, migration, and angiogenic processes. Numerous murine models have been developed to study human cancer. The most widely used models are the human tumor xenograft mouse model. Materials and Methods: In this study, human tumor cells (NCI-H640, 1 × 107 in 100 μL) are implanted subcutaneously, or 1 × 107 in 50 μL in the thoracic cavity, in athymic nude mice (nu/nu). The implanted cells were allowed to grow for 10 days before initiation of drug treatment (dimer oxime and topotecan, ip). Tumor volume and thoracic/body weight ratio were recorded. Results: We successfully established subcutaneous and thoracic xenografts with human nonsmall cell lung cancer cell line xenografts in athymic nude mice in only 10 days. Using these models, we attempted treatment of xenografts with topotecan – a known anticancer drug and artemisinin dimer oxime or combination of these two drugs. Combination therapy showed a significant reduction in tumor volume and tumor/body weight. Treatments with combination of topotecan and dimer oxime resulted in the reduced mortality rates in comparison with untreated mice. Conclusions: Xenograft tumor models are useful for preclinical screening of new pharmacophores. From this preliminary study, it appears that combination of dimer oxime and topotecan may be used as chemotherapeutic agents against nonsmall cell lung cancer. Further studies are needed to evaluate other combination treatment regimens as well as the mechanism(s) of action

    GC-MS Analysis and Bioactivities of the Essential Oil of <i>Suaeda aegyptiaca</i>

    No full text
    Suaeda aegyptiaca is a halophytic plant widely growing in northeast Africa and Asia. The current study reports on the GC-MS analysis of S. aegyptiaca essential oil. The essential oil was prepared using three different methods: cold n-hexane extraction (CHE), hot n-hexane extraction (HHE), and hydro-distillation extraction (HDE). The GC-MS analysis detected twenty-eight compounds in both CHE (97.28%) and HHE (97.35%) and twenty compounds in HDE (98.65%). 2-methyloctacosane (48.72%); 11-decyldocosane (29.20%); and 1, 2-benzenedicarboxylic acid diisooctyl ester (57.87%) were the main constituents in CHE, HHE, and HDE, respectively. Free radical scavenging activity testing using 2,2-diphenyl-1-picrylhydrazyl (DPPH) revealed the notable anti-oxidant potential of HDE (IC50 0.358 mg/mL) compared to ascorbic acid (IC50 0.264 mg/mL). Moreover, in vitro anti-inflammatory activity testing using COX-1 and COX-2 showed the notable activity of HDE (IC50 5.50 µg/mL and 2.59 µg/mL, respectively). The observed anti-inflammatory activity of HDE was further confirmed by the characteristic decrease in TNF-α levels in RAW264.7 to 572.20 Pg/mL compared to the decrease of 442.80 Pg/mL caused by the positive control (Celecoxib®). On the other hand, a cytotoxic activity investigation indicated that CHE was the most potent against the Caco-2 and HCT-116 cell lines (IC50 8.11 and 11.18 µg/mL, respectively), and it was closely followed by HHE (IC50 12.42 µg/mL) against the Caco-2 cell line. Collectively, S. aegyptiaca essential oil prepared by the hydro-distillation method exhibited notable anti-oxidant and anti-inflammatory activities, while the same essential oil prepared by solvent extraction methods displayed a characteristic cytotoxic activity against the Caco-2 and HCT-116 cell lines. These results confirmed that different extraction methods greatly influence the biological potential of an essential oil, which, in turn, is attributable to the different constituents in each extract Moreover, S. aegyptiaca was noted as a promising halophytic plant for more phytochemical and biological investigations

    Efficacy of Prosopilosidine from Prosopis glandulosa var. glandulosa against Cryptococcus neoformans Infection in a Murine Model

    No full text
    In this study, 2,3-dihydro-1H-indolizinium alkaloid-prosopilosidine (PPD), that was isolated from Prosopis glandulosa, was evaluated against C. neoformans in a murine model of cryptococcosis. In vitro and in vivo toxicity of indolizidines were also evaluated. Mice were infected via the tail vein with live C. neoformans. Twenty-four hours post-infection, the mice were treated with PPD once a day (i.p.) or twice a day (bid) orally, or with amphotericin B (Amp B) intraperitoneally (IP), or with fluconazole (Flu) orally for 5 days. The brains of all of the animals were aseptically removed and the numbers of live C. neoformans were recovered. In vitro toxicity of indolizidine alkaloids was determined in HepG2 cells. PPD showed to be potent in vivo activity against C. neoformans at a dose of 0.0625 mg/kg by eliminating ~76% of the organisms compared to ~83% with Amp B (1.5 mg/kg). In addition, PPD was found to be equally efficacious, but less toxic, at either 0.125 or 0.0625 mg/kg compared to Amp B (1.5 mg/kg) when it was administered bid (twice a day) by an i.p. route. When tested by an oral route, PPD (10 mg/kg) showed potent activity in this murine model of cryptococcosis with ~82% of organisms eliminated from the brain tissue, whereas Flu (15 mg/kg) reduced ~90% of the infection. In vitro results suggest that quaternary indolizidines were less toxic as compared to those of tertiary bases. PPD (20 mg/kg) did not cause any alteration in the plasma chemistry profiles. These results indicated that PPD was active in eliminating cryptococcal infection by oral and i.p. routes at lower doses compared to Amp B. or Flu

    Anti-Inflammatory, Anti-Oxidant, GC-MS Profiling and Molecular Docking Analyses of Non-Polar Extracts from Five Salsola Species

    No full text
    Genus Salsola (family Amaranthaceae) is one of the most prevailing genera in Saudi Arabia. Although several species were reported for their traditional uses, the majority of Salsola species still need to be phytochemically and biologically explored. The current study presents the GC-MS profiling as well as an in vitro investigation of the bioactivities of the n-hexane extracts from the five Salsola species: Salsola arabica, S. cyclophylla, S. imbricata, S. incanescens and S. villosa. Additionally, the compounds identified in the most active extracts were screened for their interaction with the active sites of cyclooxygenase enzyme isoforms (COX-1 and COX-2). GC-MS analysis of the n-hexane extracts from the five species resulted in the identification of 67 constituents. Oleic acid (75.57%), 1-octadecene (14.46%), cinnamaldehyde &alpha;-hexyl (57.15%), octacosyl heptafluorobutyrate (25.36%) and hexadecanoic acid methyl ester (26.15%) represent the major constituents in S. arabica, S. cyclophylla, S. imbricata, S. inscanescence and S. villosa, respectively. Results of bioactivity testing highlighted S. villosa as having the highest anti-oxidant activity (IC50 0.99 &plusmn; 0.05 mg/mL), which was closely followed by S. cyclophylla (IC50 1.36 &plusmn; 0.06 mg/mL) compared to the IC50 of 0.16 &plusmn; 0.01 mg/mL recorded by ascorbic acid. S. villosa was further noted for having the strongest COX-2 inhibitory activity (IC50 4.6 &plusmn; 0.13 &micro;g/mL) among the tested extracts followed by S. arabica (IC50 13.1 &plusmn; 0.37 &micro;g/mL) and S. cyclophylla (IC50 20.1 &plusmn; 0.57 &micro;g/mL). On the other hand, S. imbricata extract displayed the most characteristic inhibition activity against COX-1 (IC50 10.2 &plusmn; 0.52 &micro;g/mL), which was non-significant from the standard drug celecoxib. Based upon bioactivity results, the phytoconstituents identified in S. villosa and S. imbricata extracts were investigated for their capability to interact with the active sites of both cyclooxygenase enzyme isoforms adopting molecular docking. Results indicated the possibility to incorporate the compounds to active sites of the enzymes where some of them bind with their polar end into the cavity beyond Arg120 and their aliphatic chain oriented to the catalytically important Tyr385 similar to the natural substrate arachidonic acid, indicating that they could be promising candidates for the future development of selective COX inhibitors

    The Glycemic Control Potential of Some Amaranthaceae Plants, with Particular Reference to In Vivo Antidiabetic Potential of <i>Agathophora alopecuroides</i>

    No full text
    Natural products continue to provide inspiring moieties for the treatment of various diseases. In this regard, investigation of wild plants, which have not been previously explored, is a promising strategy for reaching medicinally useful drugs. The present study aims to investigate the antidiabetic potential of nine Amaranthaceae plants: Agathophora alopecuroides, Anabasis lachnantha, Atriplex leucoclada, Cornulaca aucheri, Halothamnus bottae, Halothamnus iraqensis, Salicornia persia, Salsola arabica, and Salsola villosa, growing in the Qassim area, the Kingdom of Saudi Arabia. The antidiabetic activity of the hydroalcoholic extracts was assessed using in vitro testing of α-glucosidase and α-amylase inhibitory effects. Among the nine tested extracts, A. alopecuroides extract (AAE) displayed potent inhibitory activity against α-glucosidase enzyme with IC50 117.9 µg/mL noting better activity than Acarbose (IC50 191.4 µg/mL). Furthermore, AAE displayed the highest α- amylase inhibitory activity among the nine tested extracts, with IC50 90.9 µg/mL. Based upon in vitro testing results, the antidiabetic activity of the two doses (100 and 200 mg/kg) of AAE was studied in normoglycemic and streptozotocin (STZ)-induced diabetic mice. The effects of the extract on body weight, food and water intakes, random blood glucose level (RBGL), fasting blood glucose level (FBGL), insulin, total cholesterol, and triglycerides levels were investigated. Results indicated that oral administration of the two doses of AAE showed a significant dose-dependent increase (p A. alopecuroides.</i
    corecore