39 research outputs found

    Regulation of GATA-3 Expression during CD4 Lineage Differentiation

    Get PDF
    GATA-3 is necessary for the development of MHC class II-restricted CD4 T cells, and its expression is increased during positive selection of these cells. TCR signals drive this upregulation, but the signaling pathways that control this process are not well understood. Using genetic and pharmacological approaches, we show that GATA-3 upregulation during thymocyte-positive selection is the result of additive inputs from the Ras/MAPK and calcineurin pathways. This upregulation requires the presence of the transcription factor c-Myb. Furthermore, we show that TH-POK can also upregulate GATA-3 in double-positive thymocytes, suggesting the existence of a positive feedback loop that contributes to lock in the initial commitment to the CD4 lineage during differentiation

    An Intrinsic Mechanism Predisposes Foxp3-Expressing Regulatory T Cells to Th2 Conversion In Vivo

    Get PDF
    Naturally occurring regulatory T (nTreg) cells express Foxp3 and were originally discovered as immune suppressors critical for self-tolerance and immune homeostasis. Through yet-to-be-defined mechanisms, nTreg cells were recently shown to convert into proinflammatory cells. Particularly, attenuation of Foxp3 expression led to Th2 conversion of nTreg cells in vivo. In this paper, we demonstrated an nTreg-specific mechanism controlling their Th2 conversion. We found that wild-type nTreg cells expressing reduced levels of Foxp3 but not those expressing no Foxp3 produced the Th2 cytokine IL-4. Intriguingly, IL-4 production by converted nTreg cells is required for Th2 differentiation of coexisting naive CD4 T cells in vivo, suggesting that Th2 conversion of nTreg cells might be critical for directing Th2 immune responses. Th2 conversion of nTreg cells was not due to their inability to become Th1 cells, because IFN-γ was produced by Foxp3-low–expressing cells when IL-4/STAT-6 signaling was abrogated. Surprisingly, however, unlike naive CD4 T cells whose IL-4 production is dependent on STAT-6, Foxp3-low–expressing cells generated IL-4 independent of STAT-6, indicating an intrinsic mechanism that favors nTreg-to-Th2 differentiation. Indeed, compared with naive CD4 T cells, nTreg expressed elevated levels of GATA-3 independent of STAT-6. And GATA-3 was required for nTreg-to-Th2 conversion. Foxp3 may account for this GATA-3 upregulation in nTreg cells, because ectopic expression of Foxp3 preferentially promoted GATA-3 but not T-bet expression. Thus, we have identified an intrinsic mechanism that imposes a Th2/Th1 imbalance and predisposes Foxp3-expressing cells to IL-4 production independent of STAT-6 signaling

    Transcription factor YY1 is essential for regulation of the Th2 cytokine locus and for Th2 cell differentiation

    Get PDF
    The Th2 locus control region (LCR) has been shown to be important in efficient and coordinated cytokine gene regulation during Th2 cell differentiation. However, the molecular mechanism for this is poorly understood. To study the molecular mechanism of the Th2 LCR, we searched for proteins binding to it. We discovered that transcription factor YY1 bound to the LCR and the entire Th2 cytokine locus in a Th2-specific manner. Retroviral overexpression of YY1 induced Th2 cytokine expression. CD4-specific knockdown of YY1 in mice caused marked reduction in Th2 cytokine expression, repressed chromatin remodeling, decreased intrachromosomal interactions, and resistance in an animal model of asthma. YY1 physically associated with GATA-binding protein-3 (GATA3) and is required for GATA3 binding to the locus. YY1 bound to the regulatory elements in the locus before GATA3 binding. Thus, YY1 cooperates with GATA3 and is required for regulation of the Th2 cytokine locus and Th2 cell differentiation

    Gata3 Acts Downstream of β-Catenin Signaling to Prevent Ectopic Metanephric Kidney Induction

    Get PDF
    Metanephric kidney induction critically depends on mesenchymal–epithelial interactions in the caudal region of the nephric (or Wolffian) duct. Central to this process, GDNF secreted from the metanephric mesenchyme induces ureter budding by activating the Ret receptor expressed in the nephric duct epithelium. A failure to regulate this pathway is believed to be responsible for a large proportion of the developmental anomalies affecting the urogenital system. Here, we show that the nephric duct-specific inactivation of the transcription factor gene Gata3 leads to massive ectopic ureter budding. This results in a spectrum of urogenital malformations including kidney adysplasia, duplex systems, and hydroureter, as well as vas deferens hyperplasia and uterine agenesis. The variability of developmental defects is reminiscent of the congenital anomalies of the kidney and urinary tract (CAKUT) observed in human. We show that Gata3 inactivation causes premature nephric duct cell differentiation and loss of Ret receptor gene expression. These changes ultimately affect nephric duct epithelium homeostasis, leading to ectopic budding of interspersed cells still expressing the Ret receptor. Importantly, the formation of these ectopic buds requires both GDNF/Ret and Fgf signaling activities. We further identify Gata3 as a central mediator of β-catenin function in the nephric duct and demonstrate that the β-catenin/Gata3 pathway prevents premature cell differentiation independently of its role in regulating Ret expression. Together, these results establish a genetic cascade in which Gata3 acts downstream of β-catenin, but upstream of Ret, to prevent ectopic ureter budding and premature cell differentiation in the nephric duct

    Oncogenic role of Pax5 in the T-lymphoid lineage upon ectopic expression from the immunoglobulin heavy-chain locus

    No full text
    Four of 9 PAX transcription factor genes have been associated with chromosomal translocations in human tumors, although their oncogenic potential has not yet been demonstrated in transgenic mouse models. The B-lymphoidPAX5 gene participates in the generation of the t(9;14)(p13;q32) translocation in germinal center B cells, which leads to deregulated PAX5 expression under the control of the immunoglobulin heavy-chain (IgH) locus in a subset of B-cell non-Hodgkin lymphomas. Here we reconstructed a human t(9;14) translocation in a knock-in mouse by inserting a PAX5 minigene into the IgH locus. The IgH(P5ki) allele, which corresponds to a germline rather than somatic mutation, is activated in multipotent hematopoietic progenitors and is subsequently expressed in dendritic cells (DCs) and in natural killer (NK), T, and B cells. Ectopic Pax5 expression interferes with normal T-cell development and causes immature T-lymphoblastic lymphomas in IgH(P5ki/+) and IgH(P5ki/P5ki) mice. Aggressive T-cell lymphomas develop even faster in Ik(Pax5/+) mice expressing Pax5 from the Ikaros locus. Pax5 expression in thymocytes activates B-cell-specific genes and represses T-lymphoid genes, suggesting that Pax5 contributes to lymphomagenesis by deregulating the T-cell gene-expression program. These data identify Pax5 as a potent oncogene and demonstrate that the T-lymphoid lineage is particularly sensitive to the oncogenic action of Pax5

    Oncogenic role of Pax5 in the T-lymphoid lineage upon ectopic expression from the immunoglobulin heavy-chain locus

    Full text link
    Four of 9 PAX transcription factor genes have been associated with chromosomal translocations in human tumors, although their oncogenic potential has not yet been demonstrated in transgenic mouse models. The B-lymphoidPAX5 gene participates in the generation of the t(9;14)(p13;q32) translocation in germinal center B cells, which leads to deregulated PAX5 expression under the control of the immunoglobulin heavy-chain (IgH) locus in a subset of B-cell non-Hodgkin lymphomas. Here we reconstructed a human t(9;14) translocation in a knock-in mouse by inserting a PAX5 minigene into the IgH locus. The IgH(P5ki) allele, which corresponds to a germline rather than somatic mutation, is activated in multipotent hematopoietic progenitors and is subsequently expressed in dendritic cells (DCs) and in natural killer (NK), T, and B cells. Ectopic Pax5 expression interferes with normal T-cell development and causes immature T-lymphoblastic lymphomas in IgH(P5ki/+) and IgH(P5ki/P5ki) mice. Aggressive T-cell lymphomas develop even faster in Ik(Pax5/+) mice expressing Pax5 from the Ikaros locus. Pax5 expression in thymocytes activates B-cell-specific genes and represses T-lymphoid genes, suggesting that Pax5 contributes to lymphomagenesis by deregulating the T-cell gene-expression program. These data identify Pax5 as a potent oncogene and demonstrate that the T-lymphoid lineage is particularly sensitive to the oncogenic action of Pax5

    Pax5/BSAP Maintains the Identity of B Cells in Late B Lymphopoiesis

    Get PDF
    AbstractThe B lineage commitment factor Pax5 (BSAP) is expressed throughout B cell development. To investigate its late function, we generated a mouse strain carrying a floxed Pax5 allele that was conditionally inactivated by CD19-cre or Mx-cre expression. Pax5 deletion resulted in the preferential loss of mature B cells, inefficient lymphoblast formation, and reduced serum IgG levels. Mature B cells radically changed their gene expression pattern in response to Pax5 inactivation. Most B cell antigens were downregulated on the cell surface, and the transcription of B cell-specific genes was decreased, whereas the expression of non-B lymphoid genes was activated in Pax5-deficient B cells. These data demonstrate that Pax5 is essential for maintaining the identity and function of B cells during late B lymphopoiesis

    Pax5 Promotes B Lymphopoiesis and Blocks T Cell Development by Repressing Notch1

    Get PDF
    AbstractThe B lineage commitment factor Pax5 (BSAP) is exclusively expressed in B lymphocytes of the blood system. To study the effect of Pax5 on the development of other hematopoietic lineages, we generated a heterozygous knockin mouse carrying a Pax5 minigene under the control of the Ikaros locus. Conditional and constitutive activation of the IkPax5 allele demonstrated that precocious Pax5 expression in hematopoietic stem cells and progenitors failed to interfere with myeloid development and only weakly affected erythroblast formation. Instead, pan-hematopoietic Pax5 expression strongly promoted B cell development at the expense of T lymphopoiesis. Pax5 thereby interfered with T lineage commitment and early thymocyte development by repressing the transcription of the T cell specification gene Notch1
    corecore